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Preface

A common problem in estimating spares Tequirements for complex
systems is accurately forecasting failure rates. While a point estimate
of system reliability can normally be obtained, it is relatively
meaningless without some confidence limit on it. The problem is
compounded in highly reliable systems that have some period of failure
free life before entering their failure period. Considerable work has
been done on reliability estimation over the last twenty years at the Air
Force Institute of Technology. This thesis is a continuation of many
efforts to provide a flexible, robust method of estimating confidence
limits. In an attempt to make the methods and procedures developed as
useful as possible to future readers, I have included seversl
illustrations, an example of how to use the procedures, and the computer
printouts of the programs used.

Thanks are due to Dr. Albert H. Moore for his assistance in
selecting this topic and his guidance throughout. Also, the frequent
support of the AFIT and ASD computer personnel in extending my account
and providing timely advice on methods to improve turn-around time is

much appreciated.

Murray R. MacDonald




Contents

Preface « o« ¢« v v 4 i 0 4 i e b e e e e e e s e e e e e e e e e oe e e il
List of FIGUIeSs + & « ¢ v o ¢ 2 ¢ s 2 o o s s o o o s s o s o o o o o ¥
List of Tables . & o & o o o & o o o 5 o o o ¢ s o 8 o o s s o « o o Vi
AbStract . o ¢ v 4 4t et e 4t e s s e s e e s e e s e e e e e Vil
1. Introduction .« o« ¢ o ¢ o 4 o 4+ o s o s s s s e s e s e e o |

Problem Statement . « . ¢« ¢ & ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o 0 o 1
. Review of Applicable Literature . . . . . ¢« ¢« ¢« o 4 & « 3
" Model Selectionn .« ¢ ¢ o o ¢ ¢ ¢ & o o ¢ ¢ o ¢ o o o« o o 1
: Underlying Failure Distribution Selection . . . . . . . 8
r Objectives « ¢ « ¢ o o ¢ o o o 2 o o s s o s o o o o 0+ 9
b ASsumptions .« ¢ ¢ ¢ ¢ ¢ ¢ 0 o s 4 s 6 s e e 0 e e 0 . o 10
: ADProach o« « o o ¢ o o o o o o o o o o o o o s o o s o o 10

II. Supporting Methods Development . « ¢ ¢ & ¢ ¢ ¢ ¢ ¢ o o o o 12

Method of Maximum Likelihood e o s o s o o o e o e o o 12

Median Rank VAlUueS + o+ o o ¢ o o o o s o s o o s o o« o o 14
Random Variable Generation . . « « « o« ¢ « o « o s+ o « « 14
Double Monte Carlo Method . « ¢ « ¢« o o « « o o« s o« « o« 15

III. Method Development s e s s s s o s s s e e s s s e e e o 18

System Configuration and Reliability « « « « ¢« ¢« ¢ &« +» .« 18

Parameters and Reliabilities Selected . . . . .« . . « « 19
Estimates Generated . « ¢« ¢ o ¢ ¢ ¢ ¢ ¢ ¢« ¢ » ¢ o o o« o 19

Accul‘acyofMethOd.............-....-20

IV. Preliminary Results and Method Development . . « « « » . . 22

Preliminary Results . « ¢ « ¢ o o o o o o s o o s o o o 22
. Parameter Estimation Development . « . . . .

Initial L.L.S. Parameter Estimation Tests .

Parameter Estimation Tests « « ¢« ¢« ¢ ¢ o ¢ ¢ ¢ ¢ o o o « 34

Discussion of Parameter Estimation Tests . .

.
.

.

.

.

.
N

-

Assessment of Method « ¢ ¢« o ¢« ¢ o ¢ o ¢ o s o o o o o o o 45

Results ® o 8 & & & e & & o 8 & S 5 & 5 8 8 e @ * e s . 45
Discussion of Results . « o« o ¢ ¢ o o o o o o o o o o o« 47
Parameter Estimation . « ¢« ¢« ¢ ¢ o ¢ o« o o ¢ s « o o 47
Sample Distl‘ibution Size @ 6 8 ® o o s & & o o o e o 49
General Method . . ¢« ¢ « o+ ¢ o o o o o o s ¢ o s s « 49

iii




Vi. Illustration of Method . . . . . .

VII. Concluding Material . . . . « . o+ &

SUMMATY « o« o o o o o o o o o o

Conclusions .« o o o o o « o o o
Recommendations . ¢« ¢« ¢ ¢« ¢ ¢ o

Bibliography . « ¢ ¢ ¢ o ¢ ¢ 4 ¢ o o o o 4 .
Appendix A: Double Monte Carlo Program . . .
Appendix B: Parameter Estimation Routines .
Appendix C: Derivation of Maximum Likelihood

Appendix D: Component Failure Data - Time to

|
|
!

iv

Equations

Failure .

51
53
53
53
54
55
59
67
7

19




List of Figures

Figure Page

1 Median RAnksS . . ¢ ¢ o o o s o 2 5 s o o s o o s o o o« o o+ 14

2 System Configuration . . « ¢ « o ¢ ¢« s s ¢ ¢« ¢ s o » o« » » 18
35 L.L.S. Plot 1 e o 6 s s s e s o s s s o s s e o e o s 27T
% 4 L.L.S. Plot 2 e o s s e s s s s s s s e e e e s s e s s 2B
% 5 L.L.S. Plot 3 e o s o o o o s o a e s e s s e e e e e« 29

6 Illustration of Graphical Method . . « « ¢« ¢« ¢+ &« ¢« s ¢« « o 30

7 True and Estimated c.d.f.s e e o o s s s s s s e e s e s B3

-




. List of Tables
Table Page
I Parameters and Reliabilities . « ¢« ¢ o« o « « o o o » o 20

11 MSE Reliability Test of L.L.S. Method + « « « ¢« « « & » 31

III  i©xample of Data for L.L.S. Test « + ¢ ¢ « ¢« ¢« ¢« &+ o o « 33

Iv Parameter Estimation MSEs for c¢=10, e=1 . . « . « - « « 35
v Parameter Estimation MSEs for System Components . . . . 37
VI Parameter Test CPU Times . . ¢« « o o o o o« o o s o o + 40

VII Harter-Moore Method - 1000 Repetitions . . « « « « « « 40
VIII Harter-Moore Method - 100 Repetitions . « «. « + « « . « 41
X Parameter Estimation Selection Results . . . . . « . . 44
X Double Monte Carlo Results: Distribution Size 75 . . . 46
X1 Double Monte Carlo Results: Distribution Size 150 . . 46
XII Double Monte Carlo Results: Distribution Size 50 . . . 48

XIII Extended Double Monte Carlo Results:
Distl‘ibutionSizeso oouoo.uoo-o-oooo-48

X1V Parameters for Demonstration . « « ¢ ¢ ¢« ¢ « o ¢ o o « 52

Xv Illustration Results . . ¢ ¢ « ¢ o ¢ o s o o s o o ¢ & 952

vi




Abstract

A Double Monte Carlo method of obtaining confidence limits for
complex systems based on component failure data assuming a three
parameter Weibull distribution was developed. Three new parameter
estimation routines were developed and compared with the Harter-Moore
three parameter maximum likelihood routine for use with the Monte Carlo
method. The sensitivity of the method to system reliability, sample
size, and number of points in the component reliability distributions was
assessed. An approximate method of calculating and correcting for
parameter estimation bias was developed and illustrated. The Double
Monte Carlo method appears to be effective at system reliabilities from
74% to 96% with componenent failure sample sizes as small as five with

the Linear Least Squares parameter estimation routine developed.
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A MONTE CARLO TECHNIQUE SUITABLE FOR OBTAINING COMPLEX SPACE SYSTEM
RELIABILITY CONFIDENCE LIMITS FROM COMPONENT TEST DATA

WITH THREE UNKNOWN PARAMETERS

I Introduction

Problem Statement

Accurate estimation of complex system reliability is important for
operational planning and system replacement scheduling. Estimation of
system reliability for Space systems is particularly important in that
replacements or repairs are generally difficult to make. Little system
reliability data exists due to the small numbers of each type of system
and the varying complexity of the systems. Component reliability
continues to improve and longer missions are planned and conducted (Ref
32) so empirical estimation of system reliability is impractical, thus
necessitating use of an analytic model to estimate system reliability.
Most models simply assume a constant failure rate (exponential
distribution) for the components (Ref 19), but these models have proved
to be very conservative which results in larger system purchases than
required (Ref 2). Empirical data was added to the models in an effort to
improve their accuracy and the effect of mission controller selection of
alternate system modes (work-arounds) has also been considered (Ref 25)
to produce reliability estimates which are not grossly in error.

Space system failures have tended to occur in one of two separate
periods: early system failure caused by undetected defects, and wearout

or failures caused by random mishaps later in the system life (Ref 2:6).

Accurately predicting early failures caused by defects is a function of




quality control. With improving design and quality control, complex
spacecraft with failure modes dominated by wearout can be manufactured
(Ref 2:7), and the effect of a few defects can be nullified by
work-arounds. The estimate of increasing importanne is the effect of
long term failures. To accurately model these effects, the system
component failure distributions must include location parameters.

Incorporating location parameters into models which use an
exponential distribution assumption would account for the necessary
period before the long term failure period was entered. Unfortunately,
the exponential distribution is not robust in that departures from the
distribution can result in large errors (Ref 11). The primary use of the
exponential distribution in system reliability estimates would appear to
be for a system which is composed of many components which are changed on
failure (Ref 14:235,237). This is not the case for space systems, so an
alternate set of assumptions which can more accurately model the failure
distributions encountered must be used.

A point estimate of system reliability is rrlatively easy to obtain
but is of itself of little value without confidence bounds. For example,
a system reliability estimate of 0.99 with a 90% lower bound of 0.95 is
considerably different than a system reliability estimate of 0.99 with a
90% lower bound of 0.50. The system reliability estimates required are a
point estimate and a lower limit at some pre-selected confidence level.

The problem is to develop a robust model that can account for some
period of guaranteed life before entering the wearout period for
reliability confidence interval estimates of complex systems. The model

must be able to incorporate many different types of components with

different failure modes and guaranteed lives.
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Heview of Applicable Literature

Over the last twenty years, a considerable amount of research has
been done into estimating component parameters from failure data and
system reliability from component data. Orkand in 1960 (Ref 24:18)
suggested a Monte Carlo method for the estimation of the lower confidence
limit on the reliability of a complex network of components. He
suggested this method as a general solution procedure and provided a more
detailed solution for the case where the sample data for each component
are in binomial form. kKosenblatt in 1962 discussed the problem of
determining confidence limits for the reliability of complex systems.

She suggested that estimation using simulation was ". . . the simplest
and most generally applicable procedure for estimating R through F
(xl,...,Xk)..." (kef 293;119) and used a binomial theoretical treatment of
the problen.

In 1963, Quayle (Ref 27) summarized the applicable reliability
theory and provided some preliminary work on parameter estimation with
his method of using order statistics to estimate the scale parameter of
the Weibull probability density function. The same year Bernhoff (Ref 3)
showed that adding component confidence limits to obtain system
confidence limits was erroneous and that no single system parameter was
appropriate when the components have different distributions. He
determined that "The analytical solution becomes impractical when the
system reliability estimator is the function of two or more dissimilar
mathematical forms and mathematical simulation must be used" (Ref 3:3).
For confidence limits he generated and used a step cumulative

distribution function.

Levy in 1964 (Ref 16) used a Monte Carlo Technique to obtain system
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reliability confidence limits from component failure test data assuming
that the components' failure distributions were two-parameter Weibull
(location parameter = 0). He established » step cumulative distribution
function to obtain system lower reliability confidence limits. His work
was later consolidated and published (Ref 17). Moore in 1965 (Ref 23)
extended the concept of using the Monte Carlo technique for obtaining
system reliability confidence limits from component data for cases where
the mathematical model for the underlying failure distributions is known,
component test data exists to estimate the parameters, and the
distribution of the estimators of the parameters is unknown. The basic
method consisted of obtaining a sample distribution of reliabilities from
which an approximate confidence interval, or limit, can be obtained at
any level of confidence.

In 1967 Hahn and Shapiro in their text (Ref 10:Chap 7) discussed the

problem of estimating confidence intervals for complex systems. The

methods developed were the use of the Central Limit Theorem for series

systems with a large number of components, the generation of system
moments, and the Monte Carlo method. They favor the generation of system
moments for relatively simple systems but prefer the Monte Carlo method
for "... highly complex situations for which the method of generation of
system moments becomes too difficult." (Ref 8:246)

In 1972 Lannon (Ref 15) used the Monte Carlo method to approximate
system reliability confidence limits assuming the components had failures
characterized by two-parameter Weibull distributions (location
parameter=0). In 1973 Boardman and Kendall (Ref 6) developed a method of

parameter estimation for a binomial mixture of two single parameter

exponential distributions under the assumption of two possible causes of
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failure, each with a single parameter exponential distribution. Their
method may have some application to the problem of estimating spacecraft
reliability but sutfers from the assumption of location parameters=0, the
lack of robustness of the exponential distribution, and the simplicity of
the model.

In 1976 Gatliffe (Ref Y) extended the use of the Log-gamma procedure
for estimuting system reliability from series only arrangements to
series-parallel arrangements. His method does not require either
assumptions about failure distribution of any component, or equal sample
sizes. His results are good for highly reliable systems but the accuracy
is unstable from configuration to configuration. His system also can be
very conservative in that it generates artificial failures when no
failures were observed.

Bilikam and Moore provided two practical illustrations of the use of
the Monte Carlo method to estimate mission reliability in 1977 and 1978.
In the first (Ref 4) they used time-grouped mission equipment failure
data where the exact failure times were unknown although the equipment
was known to have failed during a mission of known length. In the second
(Ref 5) they used known failure times of one type of aircraft engine
component. Also in 1978, Snead (Ref 30) developed a univariate method of
using the asymptotically normal property of R(t) with a Monte Carlo
technique to estimate system reliability confidence limits.

In 1979 Putz (Ref 26) used the univariate Monte Carlo method to
estimate lower confidence limits of system reliability based on component
test data. He assessed the sensitivity of the method to the asymtotic

normality assumptions and estimated the minimum sample size required for

this method. His method is the most effective when component and system




reliabilities are low (less than 0.9) and sample sizes of fifty or more
are available. When the component reliabilties are high and/or the
sample size is low, the distribution of R(t) is no longer nearly normal
which can result in significant errors.

In 1979 Rice (Ref 28) assumed the number of component failures was
binomially distributed. Using the asymtotic normality property of the
binomial distribution (n>20), he developed a Monte Carlo m¢ hod of
estimating lower confidence limits on system reliability with component
failure data input. In the cases where no failures were observed he used
the Gatliffe method of generating artificial failures. Also in 1979,
Antoon (Ref 1) used Monte Carlo analysis to find empirically the standard
deviation of reliability of a system whose underlying component
distributions were two-parameter Weibull (location parameter=0). He
developed, by curve fitting, an equation for computing the standard
deviation in terms of reliability and sample size.

In 1980, Johnston (Ref 13) used a Modified Double Monte Carlo
procedure to estimate system reliability from component data where the
compon:nt failure distributions were characterized by the two-parameter
Weibull (location parameter=0). He used the bias tables published by
Thoman, Bain and Antle (Ref 31) to correct his estimates of reliability
and obtained reasonable results, although the results are difficult to
evaluate fully since different system configurations with different
reliabilities were used. Alsé in 1980 Moore, Harter, and Snead (Ref 21)
compared three Monte Carlo techniques for obtaining system reliability
confidence limits; the bivariate, the univariate, and the Double Monte
Carlo. Their conclusion was that the bivariate tended to be conservative

and the univariate asymtotic optimistic with the Double Monte Carlo in
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between. Depuy (Ref /) compared the accuracy of two Monte Carlo
simulation techniques of finding lower system reliability confidence
limits: the bivariate and the univariate. She found the bivariate
method the most accurate if the true system reliability is below 0.95,
and the univariate most accurate if the true system reliability is
greater than about 0.95 and the component data sample size is less than
twenty.

Finally, in his review of reliability growth (Ref 33), Vonloh
discusses the use of the Monte Carlo method in system reliability growth
prediction models. The entire subject area of reliability growth is
applicable to new developing technology and the flexibility of th Monte
Carlo method in general makes it useful for estimation of the reliability

of systems whose parameters may be changing.

Model Selection

Two methods of system reliability determination warrant further .

discussion: the method of moments and the Monte Carlo method. The

method of moments can be the most economical aproach. It also allows the

analysis of the relative importance of each component variable by

examination and does not require any assumptions about the underlying

component distributions. On the other hand, the accuracy of the results A

1 is not always consistent and cannot be readily analyzed. Also, the

E generation of system moments soon becomes unworkable with increasing
L system complexity (Ref 10:246,247).

Ei The Monte Carlo method requires that an assumption regarding the
ff component failure distribution be made. Also, it does not allow for

detection of dominant components. Since the method estimates overall




system performance, a change in any of the components requires that the
entire system be re-analyzed. The method also requires a considerable
amount of computer time - the exact amount being dependent on the system
and the assumptions in the model. On the positive side, the Monte Carlo
method has proven useful in a wide variety of applications. It has been
extensively used in developing system reliability confidence limits,
particularly for a two-parameter Weibull or a binomial distribution. It
is easy to use and, if the Double Monte Carlo method is used (Ref 20)
does not require any assumptions other than those of the component
reliability distributions. Therefore, for this problem, the Double Monte
Carlo method was selected as the most suitable for developing the

required model.

Underlying Failure Distribution Selection

- .. e

In using the Monte Carlo method, it is necessary to select a

suitable component failure distribution. The distribution should allow

for the possibility of a location parameter greater than zero and a

non-symmetrical shape in order to allow fitting of the distribution to
the data available or, aa Easterling wrote "Thus the task facing the
statistician is more often one of model fitting than of parameter
estimation"” (Ref 8). This is because a given set of data may not clearly
resolve the appropriate distribution.

Exponential. The exponential distribution is widely used and is
well analyzed. However, even if a location parameter were added it would
still not have the required flexibility in shape.

Gamma. The gamma distribution has been used in fatigue and wearout

studies. It can assume a variety of forms which could be fitted to a

considerable variation on data.




Normal. The normal density also is commonly used. It can
accomodate a period of near-guaranteed life and can assume different
scales depending on the mean and variance. However, its symmetrical
shape limits its application.

Log Normal. Like the normal density the log normal can accommodate
a period of near-guaranteed life and can assume different scales.
However, its shape is limited to a positively-skewed normal curve.

Weibull. The three~parameter Weibull can accomodate any positive
location parameter and a wide range of shapes and scale depending on the
respective parameters. The scale paraumeter determines the spread about
the mean, the shape parameter determines the failure rate - whether
increasing, decreasing, or constant, and the location parameter
determines the point beyond which failure can occur. The Weibull density
function has shapes that are similar to the Gamma or the lognormal -
assuming appropriate Weibull parameters. If the shape parameter is 1,
the Weibull becomes an exponential function; a shape parameter of about
3.7 yields an excellent approximation to the normal function and a shape
parameter of 2 can approximate Beta distributions. It has also been
shown valid for a wide variety of actual situations (Ref 34) and has the
necessary flexibility to fit any foreseeable set of failure data.
Therefore, the three-parameter Weibull distribution was selected for this

model.

Objectives

The objectives of this thesis are:

t. to develop a model to estimate complex system lower

reliability confidence limits;
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2. to estimate the minimum practical sample size, and
3. to assess the sensitivity of the Double Monte Carlo method

to the number of points in the sample distributions of reliability.

Assumptions

It is assumed that:

1. The underlying component failure distributions can be
modeled by three-parameter Weibull distributions;

2., Components fail independently; that is, there are no
secondary failures;

3. A mathematical relationship between component reliabilities
and system reliabilities can be established;

4. The International Mathematics and Statistics Library (IMSL)
subroutines GGUBS and GGWIB provide valid random variables; and

5. The user has a basic knowledge of reliability theory, Monte

Carlo methods, and FORTRAN 77.

Approach

Existing methods of estimating parameters from failure data were
examined and the most suitable method was selected for inclusion in the
model. The failure data was generated artificially to represent true
component failures from three-parameter Weibull distributions with
different parameters. A single complex model was developed and the true
reliability calculated analytically to use as a test of the model
results. The model was tested at system reliabilities of about 75%, 85%,
and 95% with all of the component reliabilities roughly matched to
simulate a balanced system. At each reliability level component failure

sample sizes ranging from five to fifty were modeled to assess the effect

10
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of different sample sizes on the model accuracy.

The Double Maonte Carlo method was used to generate the estimates of
system reliability confidence intervals. When initial results indicated
that the method of parameter estimation used was inadequate for a three
parameter model, three new methods were developed, evaluated, and the
best selected for use. The evaluation of the overall method consists of
comparing the percent of times the X percent confidence interval captures
the true reliability. For example, at the 80% confidence level, 80% of
the time the confidence level should be below the true reliability.
Finally, a sample illustration of the method was provided for practical

guidance.

11




II Supporting Methods Development

Method of Maximum Likelihood

The assumption of a component failure distribution necessary for the
Monte Carlo method requires that the distribution parameters for each
component be estimated from its failure data. The method of maximum
likelihood has been widely accepted as one of the most reliable methods
of estimating distribution parameters. The maximum likelihood estimators
are consistent, asymptotically normal and asymptotically efficient for
large samples under most conditions (Ref 35:89).

The probability density function of a random variable T having a
Weibull distribution with location parameter ¢, scale parameter e, and

shape parameter k is
k

k ,t-c -1 t-c k
t(t;e,0,k) = o (=) exp [- (5=) ] olest, o0, kdo
To establish the maximum likelihood values of the parameters c, e,

and k it is necessary to formulate the likelihood function and solve for

the values of the parameters that maximize the function. Let Ty, Ty,
«e+s T, be the observed values in a random sample of size n. Then the
likelihood function is

n
L(t,c,e,k) = i £f(t5; c,e,k) tide

1
Now if the t; are treated as fixed constants, then the likelihood
function may be treated as a function of the three unknown parameters.

Substituting in the value of f(t;; ¢, e, k) the likelihood function

becomes o<e<t
n k ,ti-c ft ti—c K o
L(c,e,k) = iY e ("]—e—) exp[-(-]";-) ] e>o
k2o

The natural logarithm of the likelihood function, ln L, is easier to

work with and does not result in any loas of generality since the maximum

12




of 1ln L and the maximum of L will occur at the same values of ¢, e, and
k. The first partial derivatives of ln L with respect to each of the
variables (the three unknown parumeters) are set equal to zero and solved
simultaneously to yield the maximum likelihood values of the parameters.
The analytic solution of this system of partial differential equations is
intractable and so requires an iterative computer routine. A commonly
used routine which has proven satisfactory for similar applications is
the Harter-Moore method of false position (Ref 12). This routine
estimates the maximum likelihood parameters based on the first m order
statistics of a sample of size n with r censored from below. The
formulation of the natural logarithm of the likelihood function used is

1n(L) = 1n(n!') - 1n((n-m)!) - la(r!) + (m-r)(1n(k)-k 1n(e))
[(ti-c)/e]k

- (n-m) [(ty-c)/e]K + rin {1-exp [-(tr+1-c)k/ek]}

m
z

m
+ (k-1) igr&lln(ti-c) “iZr+1

This formulation leads to the partial differential equations

k
aln L _ _ k(m-r) + k3B (t.—c)k ek+1 . k(n-m) (ty-c)
e e izr+1 1 oK+l
k k, k,, k+1 k, k
- kr(tr+1-c) X exp[—(tr+1—c) /e 1/e (1-exp[—(tr+1—c) /e 1}
aln L ‘ m k
= (m-r)(1/k-1lne) +igr+lln(ti—c)-i§r+1[(xi-c)/e] ln[(xi—c)/e] -
I k
(n-m)[(tm-c),e] ln[(tm-c)/e] + r(tr+1_°) ln[(tr+1—c)/e]
exp{—[(tr+l—c)/e]k)+ ek{l-exP[—(tr+1-c)k/ek]}
aln L -1 -k m _ k-1
Rt L U LIS RS T AU O
-k k-1 k-1
+ (n-m)ke (tm-c) - kr(tr+1-c) X

k, k. k ko k
exp[—(tr+1-c) /o ].'e {1-exp[—(t:r+1 c) /e ]}

The routine which solves these equations is listed in Appendix B.

13




Median Rank Values
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The Double Monte Carlo method builds estimated reliability
distribution functions from which the appropriate confidence limits are
selected. This requires that the randomly generated reliabilities be
ordered and ranked. Several methods of rank plotting are available, with
the median rank method the most commonly used because of the assumption
that the rank distributions are skewed. The median rank is actually an
incomplete beta ratio which cannot be readily calculated. However, the

approximation to the median rank value given by

E - j—0.3

n+0.4
has an insignificant error for the large sample sizes (n > 50) used in
the reliability distribution functions. An illustration of the median

rank plotting against reliability with linear interpolation between

points as used in this development is provided in Fig 1.

R(t)

Figure 1. Median Ranks

Random Variable Generation

The IMSL routine GGWIB was used to generate single parameter (k)

14
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Weibull variables which were transformed to three-parameter Weibull
variables by subroutine WEIBL. The IMSL routine uses a c.d.f.
F(t)=1-exp [-tk] and inverts this to the reliability function to obtain
the relationship t=[-1n (u)] 1/K where u is a uniform pseudo-random
variable.

For the three-parameter distribution, the reliability function is

R(t) = exp[- (£9)¥]

Letting u=R(t) and taking the logarithm of both sides gives
- _ t-c\k
1n u (-;—)
- 1/k = Lz
(-1n u) S
e(-1n u) V/k + ¢

t

Double Monte Carlo Method

The Double Monte Carlo method does not require any asymtotic
assumptions and can be used with any component failure data providing
that an assumption is made regarding the underlying failure distribution.
For the purpose of developing and proving the model, the "real" failure
data was generated using the "true" parameter values for each component.
These true parameter values also allowed the analytical calculation of
the true reliability which was used as a test of the results. The Double
Monte Carlo method initially used consisted of the following steps.

1. Generate the true component failure data.

2. From the true component failure data, estimate the three

parameters of each of the component reliability functions.

3. Generate a simulated sample of component failures, using the

15
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estimated parsmeters, with the same number of observations as the
test datu.

4. From these simulated failures, estimate the three parameters
of each of the component reliability functions.

5. Using the second estimate of the parameters, calculate the

~

reliability of each component, R

ij°

6. Repeat steps 3-5 until the required underlying sample size is
obtained (50, 79 or 150).

7. Establish sample estimated reliability distribution functions
for each component by ordering the ﬁij for each component and
matching each Rij with the appropriate median rank. The first and
last order statistic, associated with the median ranks O and 1
respectively, are approximated using linear extrapolation off the
two nearest order statistics.

8. Randomly select a reliability for each component from its
reliability distribution function using linear interpolation between
points and compute the system estimated reliability ﬁal‘ Repeat
until 600 estimates of system reliability are obtained.

9. Order the ﬁsl against median ranks and determine the 99, 4%, 90,
80, 70, 60, and 50 percent lower confidence points using linear
interpolation between points on the system sample distribution of
reliability estimates. Note if the true reliability is greater than
or equal to each of these confidence points.

10. Steps 1-9 provide one estimate of the system reliability
confidence limits. To validate the method, these steps are repeated
1000 times. The X percent confidence 1limit should be less than or

equal to the real system reliability X percent of the time.

16




Appendix A contains the computer program listing for the Double

Monte Carlo method used. In actual practice only one true set of data
would be a-uilable; step 9 would consist of printing out the desired

confidence levels and step 10 would not be applicable.

ot

e s ot e e -
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II1 Methed Development

System Configuration and Reliability

The Monte Carlo method of determining approximate system reliability §
confidence limits was selected as the most suitable for this development
because of its advantages in handling complex systems. Of interest is
the accuracy of the method for different reliability levels and different
sample sizes for a complex system. Therefore, only one system
configuration was used in order to be able to compare the results at the
different reliability levels and sample failure levels tested. The

system configuration selected is illustrated in Fig 2.

“"_'i_"_"_'",_"__"_)‘ e T
. A

] i '
il | !

I 4 !
:l 3 } |
LF;T_“;: :L:Lfé _____ J )

! - = 7 F—>
5 C

Fig 2. System Configuration
For the Weibull distribution, the component reliabilities are
Ri(t) = exp[-(£§§i)ki] t>o c¢3>t e3%0  kjdo

From the system illustration, the system reliability Ry is

Ry = Ry (1-FgFc) = Ry (1-(1-Rg)(1-R¢) ) = Ry (Rg + Rg ~ RpRe)
RA = (1-F21“5) = R2 + R3 - RzR5

18




= R5 + Re - P‘f)RG

=
i

s = By HL(By + B3 - Ry R3) Ry} + (Rg + Rg - RoRg) -

[(ky + ks - Ry R3) Rg) (kg + Kg - RgRg))

Parameters and Reliabilities Selected

As a matter of couvenience and to maintain continuity with previous
methods, a time of 100 units (T = 100) was used throughout. The same
location parameters were used with the scale and shape parameters changed
to provide balanced component reliabilities and a good range of parameter
selections for the test. The parameters and reliabilities used are

listed in Table 1.

Estimates Generated

The parameter estimates generated by the method of maximum
likelihood are biased, and the reliability estimates derived from these
estimated parameters will be biased. Thoman, Bain, and Antle (Ref 31)
empirically determined and tabled the bias in ﬁ(t) for a two-parameter
Weibull distribution for a range of .50 ¢ ﬁ(t) < +98 and sample sizes
from 8 to 100. VYor sample sizes greater than 15, the biases were only
third decimal place values. Moore, Harter, and Antoon (Ref 22) assess
the reliability estimate for a two-parameter Weibull as being very nearly
normal and very nearly unbiased for sample sizes greater than about 20.
The bias in ﬁ(t) for a three-parameter Weibull distribution has not been
tabulated but, from the work done on the two-parameter Weibull
distribution, can be expected to be small for larger sample sizes (> 30).
The results of this method includec any bias present, and should provide

some feel for the magnitude of the bias in the parameter estimation

routine used.
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TABLE I

Parameters and Reliabilities

i= 1 2 3 4 5 6
¢cj (Location) 10 0 15 30 25 50
k; (Shape) 2.8 1.1 2.0 2.5 1.7 1.4
o; (Scale) 140 400 180 120 180 150
Ry .748 .804 .800 L1 .798 .807
Rg = 0.741
¢y 10 0 15 30 25 50
kj 2.3 0.8 2.0 3.5 1.2 2.0
ey 200 470 180 120 250 150
Ry -853 . 748 .800 -859 .790 .895
Rg = 0.849
ci 10 0 15 30 25 50
ky 2.9 2.1 2.3 3.0 2.7 2.0
o 270 470 400 160 250 280
R .960 1962 .972 .920 .962 <969
Rg = 0.959

Accuracy of Method

With Monte Carlo simulation, the larger the number of trials in the
simulation, the more precise the solution will be. The desired degree of
precision can be obtained by increasing the number of trials. The number
of trials required for a degree of precision, E, can be calculated at a
desired confidence level, 1 -« , by considering the Monte Carlo as a
binomial problem where the estimate of interest is the proportion p of
systems above a certain level. The calculation of n depends on the value
of p actually found in the Monte Carlo simulation so a certain amount of
trial and error is required. However, for a conservative estimate the

largest n will be required for p = 0.5 which may be used to obtain an

20




upper bound on n. The normal approximation to the binomial can be used
for convenience with little error since the number of Monte Carlo trials
will generally be sufficiently large to ensure that np or n (1-p) are

greater than five. This approximation leads to the relation

_pli-p) 2
=TT Y a2

for a two sided interval where Z1_Q/2 is the (1-«/2)100 percent point of
the standard normal distribution.

If the error is required, it can be determined by the relation

. _ .pQ1-p) %
E = ( - ) 71_“/2

For example, if 1000 Monte Carlo trials result in 900 points within some

900
specified tolerance, p = 1555 = 0.9 and, at the 95% confidence level

(.9)(.1)

1/
500 )? 1.96 = £ 0.0186

E = (
While the accuracy of the Monte Carlo procedure can be readily i
estimated, the model accuracy is more dependent on the accuracy with
which the component parameters can be estimated from failure data. An
error in parameter estimation is compounded by the use of these estimated
parameters to generate random samples from which the second estimate of
parameters is made. Therefore, the overall accuracy of the method can

only be estimated from the results tested against the known point. An i

underlying assumption in developing the model is that the results can be

extended to other similar complex systems.
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IV Preliminary Kesults and Method Development

Preliminary Results

The Double Monte Carlo program wus developed and run for a single
estimate of system reliability (in step 10 only one estimate obtained) at
Ry = .95 with 10 failures and 79 points in the sample distributions of
component reliability estimates. This single estimate required 677
seconds of CDC’Gyber Model 74 (CSB System) CPU time. When extrapolated
to 1000 estimate;'pgr run and 15 runs required (5 sample sizes and 3
reliabilities), thi;'results in an estimate of over 2820 hours (4 months)
of CPU time. The expenaive part of the method was step Four:
calculating the second maxinum likelihood estimators of the parameters
from the simulated failures. In addition to being time consuming, this
step produced estimates of the location parameter, c, that were larger
than the test time (T = 100) for 202 of the 450 (45%) parameter
estimations from the simulated failure data. These large estimates of ¢
were not surprising in light of the high component reliabilities and the

small sample size but did indicate a potential problem with the parameter

estimation method under these circumstances.

Parameter Estimation Development

These initial results showed that a much faster and more reliable
method of parameter estimation had to be obtained in order to reduce the
CPU time and get more reliable estimates of the location parameter c.
Because of the large number of parameter estimations required, the
overriding requirement was to greatly increase speed. Other work done on
parameter estimation was more concerned with accuracy (Ref 18), so the

other available routines were also slow. The first approach taken was to
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modify the maximum likelihood routine used. Initially the accuracy
tolerances were set at .0001 and the program could run for a maximum of
550 iterations. Trial and error with the method resulted in reducing the
maximum number of iterations to 300 and the accuracy tolerances to .O!
without any significant degradation of results. This reduced the run
time to about 60% of its previous level. Since this was still far too
slow, modifying this procedure was abandoned and three new methods were
developed.

The first approach taken was to develop a computerized graphical
estimation technique using the ordered samples ty, i =1, 2, ..., n, and
accept the parameters which gave the minimum error least squares fit.

The cumulative distribution function for the two-parameter Weibull,
F(t) = 1-exp|- (g)k] can be rearranged and the natural logarithm taken
twice to give the relationship

1n (In(gzrpgy) = k 1n(t) - k 1n(e)
which, when rearranged, gives
1n(t) = ¢ In(in(=prey)) * 1n(e)
The substitution of Y = 1n(t), m=&, X=1n (ln(f:%TET))’ and a = ln(e)
provides the linear relationship Y = mX + a. The values of F(t) were
estimated by the use of median ranks. The value of k was estimated from
the first and last values on the abscissa and ordinate. Using the
estimate of k and F(t) as given constants, ln(e) can be calculated by
1n(e) = 1n(t) = { 1n (1n(;=frgy))
Since e is a constant for each set of data, the value of 1ln(e) is

constant for each t; which leads to the following:

igl 1n(e) =izl Lln(ti) - % in (ln(T:%T§:7))]

23
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accepted.

3.

n
SSEy =ty

- B A S -1
n ln(e) = &, 1n(t;) Pk, 1o (ln(l-F(ti)))
A -1 n S
n(e) = (i1, 1n(t;) K iE, n (ln(l-F(ti))))/n

The value of 1ln{e) can be used to estimate 1ln (ti) and these
estimated values compared to the actual values of ln(ti) observed for one
estimated linear relationship. If various values of c are subtracted
from the sample data, each new sample can be used to estimate k and e and

i the parameters which provide the best fit to a linear relationship

The method allows for an estimate of c=t; by using t, and n-1

instead of t, and n respectively wherever required.

In this case, ty is

effectively censored.
The step-by-step procedure for this method is as follows:
. 1 .
1. Generate the abscissa values, xy, from ln (ln(T:FTEIT)) using
median ranks as the plotting position of F(t;).

n
2. Calculate the i, xj

In a loop ranging from J = 0 to 10 do the following:

a.

b‘

8.

set ¢j= (J) (0.1) (ty)

calculate the y; by the relationship y; = 1ln(tj-&;)

n
calculate L, ¥j
Xp=X]
Yn=Y1

1
calculate 1n (e) by ln(ej) = (igl Vi - g 321 xi)/n

set k.] =

calculate the natural logarithm of the estimated failure

, _ 1
timas, E(yi), by L(yi) = T(J xi + 1n(°J)

calculate the sum of squares of errors, SSEj, by

(E(yi) 'Yi)2

4. Determine the smallest SSE; and use €=cj, %=kj, Q'exp(ln(oj))

24
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extreme values could result in some degradation of the estimate if one

(or both) of the extreme values were outliers. Due to their long

E separation, a considerable deviation would have to occur in one of the
|
E extreme values of t before the effect could be expected to be serious.

However, to avoid any potential problem of this nature, or others pointed

out further on, it is only prudent to examine the data before entering it
into the computer for analysis. Because of the method of obtaining
linear relationships and checking them by best least squares fit, this
method will be referred to as the Linear Least Squares (L.L.S.) method of
parameter estimation. Appendix B contains the program for this method of
parameter estimation.

Since the L.L.S. method depends to some extent on the plotting
position used, various plotting positions were tested against several
parameter combinations similar to those selected for the Double Monte
Carlo procedure developed. The plotting positions tested were:

1. the mean, j/(n+1);

2. median, (j-.3)/(n+.4);

3. (§-.375)/(n*.25);

4. midpoint, (j-.5)/n; and

5. the mode, (j=1)/(n-1).
i

The median rank method was selected since it gave consistently ;
closer estimates than the other two methods and also it has been

extensively used with good results.

Initial LLS Parameter Estimation Tests

‘ Three manual plots of twelve data points each on Weibull paper were

made as a check for gross errors in the LLS method. For the first check,

25
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parameters of c¢=10, k=2.3 and e=120 were used to generate the data

points. The LLS routine provided estimates of ¢=40.3, §=1.48, and e=105.
The plot of the data points with ¢=O (e) and ¢=40.3 (e) is provided in
Figure 3. The estimate selected by the program appears to plot
accurately on the Weibull chart. For the second and third checks, the
data points corrected for ¢ which the program selected were plotted and
the parameters estimated manually. In both of these cases, the data
plotted well and there was no appreciable difference in the plotted
parameter estimates. Parameters used to generate the data were c=30,
k=2.3, =180, and ¢=30, k=3.1 and =400. The respective parameter
estimates were c=81, k=1.35, =158 and ¢=162, k=1.76, €=302. The plots
of the estimates are provided in Figures 4 and 5.

The LLS method of parameter estimation was then tested by the
following computerized procedure.

1. Generate random samples of size 5 to 50 from three-parameter
Weibull distributions with pre-selected parameters.

2. Calculate true system reliability from the pre-selected
parameters. T was arbitrarily set equal to 100 throughout.

3. Estimate the parameters from the sample data generated.

4. Calculate the estimated reliability, §(100), from the estimated
parameters. If ¢>100, set R(100)=1.

5. Three sets of parameters were each used to generate 5, 10, 20,
and 50 random samples for fifty parameter estimations at each of the
twelve combinations.

6. The mean square error between the estimated reliabilities and
the true reliability was calculated for each combination.

The true parameters used for the test, true reliabilities, number of

26
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time ®(100)=1, and mean square errors for reliability are listed in Table

I1. A graphical illustration of the method from ten random samples is
provided in Figure 6. For this illustration, the samples were 105.3,
13%.6, 196.4, 233.6, 360, 365, 372.1, 417.2, 428.5, and 566.8 from true
parameters of c=25, k=2.1, and e=280 with a true reliability of 0.939.
The parameters obtained from the ’inear least squares method fit the
estimated cumulative distribution function to the true cumulative
distribution function very well. However, the estimated parameter sets
generally had a ¢ that was low, and a k and e that were high. For
example, with ¢=50, k=2 and =280 and a sample size of ten, the average
estimated parameters were 8=3.84, §=2.86 and 3=331. Figure 7 illustrates
a cumulative distribution obtained from the true parameters and the
average estimated parameters. This tendency to underestimate ¢ and
overestimate k and e was evident for all the initial sample size and

parameters tested.

In(t)

in (1n(1—_11m—)))

Fig 6. 1Illustration of Graphical Method
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TABLE II
MSE Reliability Test of L.L.S Method
Sample Size MSE R(100)=1 c k ) R(100)
5 .0234 o 10 2.8 140 .7481 i
10 .0093 0
20 .0063 0
50 .0035 0 ]
: 5 .0206 1 0 1.1 400 .8044
f 10 .0083 0
‘ 20 .0052 0
‘ 50 .003%2 0 ‘
i 5 .0033 3 50 | 2.0 | 280 .9686
! 10 .0009 1
.
: 20 .0008 22
i 50 .0002 0
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As a further test of the L.L.S. method, a comparison of individual
purameter MSEs was made with the results of Miller (Ref 18) using the
parameters c¢=10, e=1 and k ranging from .5 to 4.0. The results with
these parameters were poor so the test was discontinued for further
analysis of the preliminary findings. An attempt was made to plot the
data points on Weibull paper but this proved infeasible. With the value
of ¢ extremely high compared to e, all of the points effectively plotted
together. Any least squares errors from the linear relationship under
these conditions becomes rather meaningless. When the data is run on a
computer program, the true best estimate was close to the first order
statistic, but because of the clustering of data points with c¢ close to
0, the computer would often select a low value of ¢ with a resulting high
value of e. Table III is an example of the data points evaluated on one
run of the L.L.S. program. The points are values of failure times (t)
minus c over a range in ¢ from ¢=0 to c=t{(1) in increments of 1/10 of the

first order statistic, t(1). For this example, the following values

applied: sample size = 12
c =10
k =2
e = 1
MSE ¢ = 62.9
MSE k = 207
MSE e = 66
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TABLE IIl1

Example of Data for L.L.S. Test

c=0 10.%4 10.46 10.56 10.59 10.67 10.86
10.98  11.27 11.29 11.44 11.52 12.56
e=.1 t(1) 9.1 9.43 9.52 9.56 9.63 9.82
9.95 10.23 10.26 10.41 10.48 11.53
e=.2 t(1) 8.27 8.39 8.49 8.52 8.60 8.79
8.91 9.20 9.22 9.38 9.45 10.49
c=.3 t(1) 7.24 7.36 7.45 7.49 7.56 7.75
7.88 8.16 8.19 8.34 8.41 9.46
c=.4 t(1) 6.20 6.32 6.42 6.45 6.53 6.72
6.84 7.13 7.15 7.31 7.38 8.43
c=.5 t(1) 5.17 5.29 5.38 5.42 5.49 5.68
5.81 6.10 6.12 6.27 6.34 7.39
c=.6 t(1) 4.13 4.25 4.35 4.38 4.46 4.65
4.77 5.06 5.09 5.24 5.31 6.36
c=.7 t(1) 32.10 3,22 3.32 3.35 3.43 3.62
3.74 4.03 4.05 4.20 4.27 5.32
c=.8 t(1) 2.06 2.18 2.28 2.31 2.39 2.58

2.70 2.99 3.02 3.17 3.24 4.29

.9 t(1) 1.03 1.15 1.25 1.28 1.36 1.55
1.67 1.96 1.98 2.13 2.21 3.25

Cc

c=t(1) .120 216 «250 .326 517
.640 .928 952 1.10 1.17 2,22

The second method developed was actually derived from the L.L.S.
method. In order to avoid the problems caused by a large c relative to
e, c was estimated from a linear extrapolation of the first two order
statistics. This eliminated the time consuming process of selecting the
best fit to a linear relationship, so k was eatimated by the average
alope between order statistics. e was estimated as before using the

values of ¢, k, and the order statistics. This modified L.L.S. method
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proved to be extremely fast in the parameter estimation comparison tests
described later. The computer routine for this modified L.L.S.
(M.L.L.S.) is included in Appendix B.

The third new method of parameter estimation developed used the same
procedure of extrapolating from the first two order statistics to
estimate c. Once ¢ is known, k and e can be quickly estimated by maximum

likelihood. These estimators of k and e are:

n/i([nigl
- LGE, xiﬁ)/n]”f(

An iterative routine was used to find k where xj=ti-c. The estimate

’}‘( )(iﬁ ln(xi)_l/igl Xii;) - 1221 ln(xi)}

>
[

of k was then used directly to estimate e. This method is referred to as
the Modified Maximum Likelihood (M.M.L.) method. The computer routine
for the M.M.L. method is included in Appendix B. Theoretical development

of these estimators of k and e is included in Appendix C.

Parameter Estimation Tests

The modified L.L.S. method and the M.M.L. were tested for individual
parameter MSEs using c=10, e=1, and k from 0.5 to 4.0. The results of
these tests, listed in Table 1V, are comparable to those obtained by
Miller (Ref 18) for these parameter selections. However, for this
project the accuracies of estimation of the parameters of more widely
spread distributions were required. Therefore, the component parameters
previously selected for an 85%f system reliability were used to test the
L.L.S., the modified L.L.S., the L.L.S. using an average slope for k
instead of just the extreme values, and the M.M.L. Sample siges of 5,
10, 20, and 50 were selected to provide a wide range without an excessive

number of points. All of the above tests consisted of calculating the
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TABLE IV
Parameter Estimation MSEs for c¢=10, e=1
Sample Size
4 8 12 16 20
c M.L.L.S. . 188 010 . 002 .001 .000
M.M.L. .188 .010 .002 .001 .000
k M.L.L.S. <335 .058 .031 .017 .012
M.M.L. .828 .094 037 .021 014
3 i o M.L.L.S. 4.40 1.05 .542 . 360 .264
! M.M.L 3.82 .963 .622 432 314
k = 0.5
Sample Size
4 8 12 16 20
c M.L.L.S. . 101 .027 .008 .006 . 004
M.M.L. .101 .028 011 .007 .004
k M.L.L.S. <344 .153 .082 .069 .052
M.M.L. 1.01 .308 117 .070 053 i
) M.L.L.S. .440 A75 137 .080 .064 E
M.M.L. 415 .163 .102 .084 .061 '
k =1.0
Sample Size
i 4 8 12 16 20
, c M.L.L.S. 156 .086 .059 .044 .036
| M.M.L. 156 .087 .056 .045 .037
i k M.L.L.S. .159 .668 .582 472 414
M.M.L. .869 .695 .438 .350 .299
) M.L.L.S. .218 . 139 .104 .079 .068
M.M.L. .228 137 .093 075 .064
k = 2-0
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Sample Size
4 8 12 16 20
c M.L.L.S. 241 .163 .128 .105 920
M.M.L. .241 163 .123 .106 .085
k M.L.L.S. 2.69 2.33 2.08 1.80 1.65
M.M.L. 1.78 1.84 1.52 1.35 1.20
e M.L.L.S. .287 .210 173 41 .125
M.M.L. .298 .209 .159 134 110
k = 3.0
Sample Size
4 3 12 16 20
c M.L.L.S. .51 .238 .213 A7 .155
M.M.L. .321 257 .194 172 .151
k M.L.L.S. 6.45 5.59 6.04 4.52 4.21
M.M.L. 4.35 4.35 3.88 3.56 3.26
°] M.L.L.S. 365 .285 .265 .210 .191
M.M.L. .375 .283 231 201 A77
k = 4.C -

- . - i
X
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TABLE V

Parameter Estimation MSEs for System Components

Sample Size

5 10 20 50
L.L.S. c 1031% 672% 713 625
k 1.12 .350 135 343
e 10,959% 6169 4155 1436
L.L.S. c 1046 744 640 625
Average k .976 245 .078 .086
Slope o 11,034 5869% 2986%* 2645
Modified c 4761 1589 529% gg*
L.L.S. k .285% .185% .076 .030
] 14,309 7104 3490 1176
M.M.L. c 4761 1589 529% qg%*
k 630 .260 .069% L026%
] 14,084 6915 3352 1130%
c=25 k=1.2 © =25
Sample Size
5 10 20 50
L.L.S. c 508% 360% 1502 225%
k 2.62 . 791 611 312
e 2204 % 1285% 1138 427
L.L.S. c 579 405 1447 225
Average k 2.28 .H82% .430 123
Slope e 2338 1393 1123% 514
Modified c 4317 2225 1265% 423
L.L.S. k JT63% .618 .409 .189
o ) 6317 3766 2280 820
M.M.L. c 4317 2225 1265% 423
k L8N .594 .307¢% .134
e 6500 3688 2154 761

c=15 k=2 © =180

37

s avane




Sample Size

5 10 20 50
L.L.S. c 1944% 610% 394 Q%
k .405 .093 .031 .026
o) 116,292 56,424 44,906 12,354
L.L.S. e 2280 802 351 ol
Average k +360 L074% J022% .009%
Slope 8 116,892 51,187 35,276 6,318
Modified [ 13,999 2,661 398 39,28
L.L.S. k .228% .096 .028 011
) 120,366 50,150 23,266 8,152
M.M.L. c 13,999 2,661 398 39.28
k .538 .148 031 .001
8 111,635% | 48,043% 22,712% 8,002%
¢c=0 k=.8 0 =470
Sample Size
5 10 20 50
L.L.S. c 553% 320% 2.565 100%
k 4.08 .891 .921 +259
] 2087% 1125% 1779% 318
L.L.S. c 593 386 2502% 100
Average k 2.68 .667* +695 .102%
Slope 2] 2181 1290 1923 311*
Modified c 6339 3557 2205 839
L.L.S. k 1.10 .938 .670 <329
(=] 8568 5365 3460 1360
M.M.L. c 6339 3557 2205 839
k .995% .823 501 235
o 8812 5256 3281 1268

10 k = 2.3 @ = 200




Sample Size

5 10 20 50
L.L.S. c g959%* 906 2152 900 %
k 11.4 4.30 3.83 2.47
5] 1173% 1037% 1701 % 944 %
L.L.S. c 996 905 % 2120 900
Average k 9.83 3.15 2.92 1.36
Slope ] 191 1068 1850 1013
Modified c 3722 2545 1880 980
1 L.L.S. k 4.25 3.47 2.81 1.67
. e 4455 3184 2375 1231
f M.M.L. c 3722 2572 1775% 1016
: k 3.04% 2.80% 2.17% 1.32%
: =) 453%6 3191 2191 1209
¢ =30 k =35 @ =120
Sample Size
5 10 20 50
L.L.S. c 2428 2402 1385 2500
k 5.16 2.33 .923 2.25
() 3816% 3350 1125 2686 -
L.L.S. c 2425% 2322 1264 2500
Average k 4.43 1.63 .539 .959
Slope o 3931 3441 1083* 3343
Modified c 2998 1545 879 294
L.L.S. k L763% .618 .409 .189
() 4387 2615 1583 570
M.M.L. c 2298 1536% 813% 309
k .801 .586% .319% «134%
) ) 4514 2571 * 1429 542%

, c=50 k =2.0 6 =150




MSEs based on Monte Carlo runs of 1000 repetitions. The results of the
estimations are listed in Table V with the best parameter estimate for

each sample size marked by an ®*. The computer CPU times required for

1000 runs of the four sample sizes for each method are listed in Table

V1.
TABLE VI
Parameter Test CPU Times
Method Time in Seconds
Lel.S. 76
Modified L.L.S. 22
L.L.S. Average Slope 90
M.M.L. 46

For comparison, a limited test of the Harter-Moore method of maximum
likelihood program was run. On the initial runs using 100U Monte Carlo
repetitions, c=0, k=0.8, and =470, only the runs for sample sizes 5 and
20 converged within 400 seconds so no further runs of 1000 repetitions

were made. The MSEs from these two runs are listed in Table VII.

TABLE VII
Harter-Moore Method - 1000 Repetitions
Sample Size MSE c MSE k MSE e
5 9013 .3978 73574
20 342 .025 17178

The number of repetition was decreased to 100 and a further test was
run using sample sizes of 5, 10, 20, and 50, c=25, k=1.2, and e=250. The
run at sample size 10 took 70 seconds which was proportional to the

length of time taken for the other runs. The MSEs of this test are listed

in Table VIII.




TABLE VIII
Harter-Moore Method - 100 Repetitions

Sample Size

5 10 20 50
Msk ¢ 4100 1238 553 156
MSE k 1.173 329 .092 .033
MSE o 13533 5947 2735 959

¢c=25 k=1.2 e =250

Discussion of Parameter kEstimation Test

On the basis of the tests using c=10 and e=1 there is little
difference between the modified L.L.S. and the M.M.L. in accuracy, with
the modified L.L.S. being twice as fast. The estimates of ¢ are the same
for both, with the occasional small differences attributable to different
random number seed values, since they use the same method of estimating
c. Both methods give reasonably good results and both are easy to
implement. The L.L.S. method does not produce satisfactory results with
a large c relative to 6. if the data is all clustered about one point,
then some method must be used to spread it for analysis such as
estimating a location parameter from the first two order statistics or
subtracting a large fraction of the first order statistic from all the
data.

Using data generated from more widely spread parameters, the L.L.S.
appears very good. It is more conaistent in its estimates of c and the
estimate of k and e are as good or close to as good as the estimates of
any of the other methods. It even compares favorably with the well
established Harter-Moore method of three parameter maximum likelihood

estimation, particularly for small sample sizes. Of interest is that the
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L.L.S. generally provided better estimates than the L.L.S. modified to
use an average slope to estimate k. The M.M.L. method was more
consistent in its estimates of k than any of the other methods. A simple
count of the number of parameters most accurately estimated shows the
L.L.S. and the M.M.L. method tied at 25 each with the L.L.S. better at
estimating ¢ and the M.M.L. better at estimating k. Neither parameter
can be considered the more critical because the importance of an error in
either depends on their magnitude and the relative magnitudes of ¢ and e.
The selection of the best method depends on which produces the best
results in the Double Monte Carlo procedure. Given equivalent results,
the astest method, M.M.L., would be preferable.

The results of the tests on parameter estimation methods indicate
strongly that extensive trials with a wide range of combinations of the
three parameters are necessary before any method can be selected as the
vniversal "best" or even as the best for a particular purpose. Until
this is done, it is advisable to visually inspect the data prior to any
furhter analysis. If the data appears well spread, the L.L.S. would be a
good choice of method to estimate the parameters. If the data appears to
be bunched in one small range, then the M.M.L. would likely be
preferable. Also, as for any other use of data, the data should be
checked for outliers before parameter estimation, and for goodness of fit
after parameter estimation.

The original systems reliability confidence level tests were
selected for sample sizes ranging from ten to one hundred. These sizes
were selected primarily because of the need for relatively large sample
sizes to obtain consistent results with the maximum likelihood method of

parameter estimation. However, the results obtained from the L.L.S. and
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the M.M.L. methods developed appear reasonable for all the sample sizes
tested: 5, 10, 20 and 50. Therefore, the preject was modified to use
these sample sizes rather than the sample sizes originally picked.

To select the better method and to illustrate the use of the
program, 1000 Monte Carlo runs were divided into seven sets of "real"
data for testing at each of the system reliabilities 74%, 85%, and 96%.

Each of these sets used the real data once but generated simulated

failures and confidence limits 1000 times. Also checked on these runs
was the number of times the estimate of ¢ was greater than the selected
mission time of 100 units. For the L.L.S., the largest percent of times
was about 5% compared to about 22% for the M.M.L. The overall results
for the L.L.S. method were much better than the results for the M.M.L.
method at 85% system reliability, so the M.M.L. method was not tested
further. For this project, the L.L.S. method of parameter estimation was

selected as the best. The average results of these test runs are listed

in Table IX. .

| 1-
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TABLE IX

Parameter Estimation Selection Results

L.L.S. Method

R = 74%
Confidence Level Sample Size
.50 .60 .70 .80 .90 .95 .99
297 587 .662 853 975 1.0 1.0 5
.418 -499 .460 622 + 793 .899 .993 10
.360 +396 443 .640  .885 .983 1.0 20
+ 3545 .478 .65% .782 .851 .91 .995 50
R = 85%
Confidence Level Sample Size
.50 .60 . 70 .80 .90 .95 .99
313 .428 .729 - 904 .998 1.0 1.0 5
445 .450 473 .628 .850 .962 1.0 10
.280 . 380 .441 «541 .589 . 785 .978 20
.335 .598 . 707 .804 .875 .975 1.0 50
R = 96%
Confidence Level Sample Size
.50 .60 .70 .80 .90 .95 .99
+345 .490 .759 <977 1.0 1.0 1.0 5
+449 +450 -456 .608 .948 .998 1.0 10
«197 .249 251 .268 511 .765 .921 20
.490 .608 . 741 <843 .952 .997 1.0 50
M.M.L. Method
R = 85%
Confidence Level Sample Size
.50 .60 .70 .80 .90 .95 .99
.300 . 300 <300 .300 .354 .448  .635 5
+393 448 450  .450  .454 518  .T12 10
.287 . %86 533 .647 647  .647 . 739 20
<305 .496 .604 . 745 .845 .852 .918 50
44




V Assessment of Method

Results

The three-parameter Double Monte Carlo Method was run for 1000 .
repetitions at system reliabilities of 74%, 85%, and 96% with component
failure sample sizes of five, ten, twenty, and fifty. Initially,
seventy-five points were used for the component sample distributidﬁs of
reliability estimates to be compatible with previous work (Ref 13). The
results of these runs are listed in Table X. The 1000 repetitions of
each combination were divided into sir runs of 150 and one run of 100 to
keep all required CPU times below 4000 seconds.

In order to check the sensitivity of the Double Monte Carlo method
to the number of points in the component sample distributions of
reliability estimates, the number of points was increased to 150 and the
method used for a system reliability of 85% with component failure sample
sizes of five, ten, and twenty. The results of these runs are listed in
Table XI.

Since increasing the number of points in the component sample
distributions of reliability estimates did not increase the accuracy of
the method, the number of points was decreased to fifty and the Double
Monte Carlo Method was checked at reliabilities of T4%, 85%, and 96% with

component failure sample sizes of five, ten, and twenty. The reduction

in the number of points from seventy-five to fifty resulted in a 1/3
reduction in the number of parameter estimations required. Since
parameter estimation takes nearly all of the computer CPU time for the
method, this reduction in points also resulted in about a 1/3 reduction

in CPU time. This, combined with limiting the failure sample sizes to
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TABLE X

Double Monte Carlo Results:

Distribution Size 75

R = 74%
Confidence Level Sample Size
50 .60 .70 .80 .90 .95 .99
-447 .550 .649 . 740 .823 .874 .944 5
475 576 .674 .765 .855 .914 .966 10
.404 519 .603 .689 . 795 877 .942 20
.488 .594 .695 797 . 907 .952 .979 50
R = 85%
Confidence Level Sample Size
.50 .60 .70 .80 .90 .95 .99
.420 .528 642 . 729 817 .876 .940 5
<470 .578 675 157 .848 .910 .976 10
362 <455 .522 .609 .715 . 786 .856 20
.522 .628 <7130 .842 .933 .967 .989 50
R = 96%
Confidence Level Sample Size
.50 .60 .70 .80 .90 .95 .99
371 501 .607 114 .807 .872 .934 5
.578 . 687 . 786 .863 .935 »959 .989 10
111 .150 .201 .290 .445 «570 .763 20
566 .660 L7167 .862 .948 973 .992 50
TABLE XI
Double Monte Carlo Results: Distribution Size 150
R = 85%
Confidence Level Sample Size
.50 .60 .70 .80 .90 +95 .99
415 522 .623 130 .824 .879 «933 5
.495 .580 .690 . 767 .856 .900 .958 10
.405 486 .570 .663 + 143 .802 .880 20
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20, allowed an increase to 500 repetitions within 4000 seconds of CPU
time. The results of these runs are listed in Table XII.

The results indicate that a sample size of twenty had the greatest
bias of the four sample sizes tested. This was particularly noticeable
at a system reliability of 96%. To obtain a better assessment of the
bias trend, the Double Monte Carlo method was run for a system
reliability of 9o0% at sample sizes of fifteen, twenty-five, and thirty.
Fifty points were used for the sample distributions of reliabilities.

The results of these runs are combined with the results of the runs under
the same conditions except with failure sample sizes of five, ten, and

twenty in Table XIII to show the trend in the system reliability bias.

Discussion of Results

Parameter Estimation. The accuracy of the Double Monte Carlo method

is dependent on the accuracy of parameter estimation. In order to be
practical for computerized operation, the parameter estimation method
used must also be fast. If the bias of the reliability estimates is
known, these estimates can be corrected for bias in the program.
Depending on the parameter estimation technique used, the bias is not
necessarily directly related to sample size. In the case of the L.L.S.
method, the routine is fast and reasonably accurate but has no particular
optimum properties; therefore, increasing sample size does not imply that
the bias will decrease. The results indicate that the system bias
becomes increasingly negative as the sample size increases from five to
twenty, then increases to slightly positive for a sample size of thirty
(Table XIII). Generally, the bias will not be known and it will prove

more practical to either establish a system bias or use the confidence
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TABLE XII
Double Monte Carlo Results: Distribution Size 50

R = 85%
Confidence Level Sample Size

«50 «60 .70 .80 .90 .95 .99

|
i
%
E
;

452 552 627 721 817 877 .933 5
.464 .501 .655 .758  .855 913 .958 10
.%96 .481 556 .659 L1571 .816 .890 20
| R = 96%
} Confidence Level Sample Size

+50 .60 .70 .80 .90 .95 .99

.425 514 611 AN .806 874 .924 5
«453 571 .654 . 154 .860 .914 .958 10
138  .186 241 333 .482 622 .783 20
R = T4%
Confidence Level Sample Size

.50 .60 .70 .80 .90 .95 .99

475 570 .648 138 .825 .882 .932 5

.472 .563 .664 155 .856 912 957 10

.461 .536 .628 .7125 .831 .901 .942 20
TABLE XIII

Extended Double Monte Carlo Results: Distribution Size 50

R = 96%
Confidence Level Sample Size

| 50 .60 .70 .80 .90 .95 .99

554  .635 .733 .822 .92 .962 .994 30

§ .425 .514  .611 L717  .B06  .874  .924 5
7 -453 <571 .654 .54  .860  .914 .958 10
I .284 .366 460 .558 .669  .761 .851 15
i 138 .186 o241 333 482 .622 .783 20
i 558  .669 .749  .833 .928 .964  .988 25
I
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level calculated that is closest to the desired level. Since with real
data the exact actual parameters will be unknown, the bias or levels used
uwust be for parameters close to the true parameters. This bias can be
calculated in the following manner:
1. PFrom the available failure data, estimate the component
parameters as accurately as possible. Computer CPU time is not a
factor for this estimation.
2. Use these accurate estimates as true parameters and run a Double
Monte Carlo program to determine accuracy at the significance
level(s) desired. Empirically determine system bias by applying
bias to the system reliability estimates until the results are
accurate. This bias will be accurate for the estimated parameters
(step 1) and conditions and should be close for the true parameters.
3. Use the bias (from step 2) to calculate the appropriate
confidence limit(s).

Sample Distribution Size. Three sizes of sample distributions of

component reliability estimates (50, 75, 150) were tested with no
apparent difference in accuracy of results. The actual error caused by
using a small number of points cannot be directly calculated since the
distribution of the reliability estimates is not known exactly, but since
the error is the difference between the point on the true curve and the
point obtained by interpolation between an upper and lower point on the
true curve, the error will be much less than the spacing of the points
used for establishing the reliability distribution. The use of 50 points
gave good results in these trials and should provide the required
accuracy for any application.

General Method. The Double Monte Carlo method of confidence limit
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estimation is easy to implement and provides good consistent results for
the three-parameter Weibull. There is a requirement to remove bias for
maximum accuracy, but an estimate of bias is readily obtainable and easy
to apply. If the extra accuracy ia not required, then considerable
computer time can be saved by using the biased estimators for approximate
confidence limits. Four parameter estimation methods are included in
Appendix B, but the method can be readily used with any parameter
estimation technique. In the results of this development, the estimation
of the location parameter appeared to be the most critical; therefore,
the data should be examined for a gross estimate of this parameter before
being input into any particular routine. A good approach would be to
ensure the data is well spread by removing some portion of the first

order statistic; then use the L.L.S. method of parameter estimation.
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VI 1Illustration of Method

In order to illustrate the method, the component parameters used for
the system reliability of 0.96 were used to generate one set of fifteen
data points for each component using a seed value of 17943. These data
are included in Appendix D. The L.L.S. method was used to estimate the
parameters from these data and a Double Monte Carlo program was run,
using these estimated parameters as true parameters, to calculate system
bias. As a matter of interest, the Harter-Moore three-parameter maximum
likelihood routine was also run to estimate the parameters from these
data points. The results of the parameter estimation routines are listed
in Table XIV.

A system bias of -0.005 was found to provide good results at the
high confidence limits of interest using seed values of 7539 and 96 for
the random number generation on two Double Monte Carlo runs of 500 each
for 1000 total runs. As a test of the accurac, of this bias, it was .

applied to the system reliability of 1000 Double Mente Carlo runs using

the known true parameters from which the failure deta were generated and
seed values of 135 and 17. Table XV lists the results of these two runs

and the original results not corrected for bias.
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TABLE XIV

Parameters for Demonstration

Component Method c k e
1 L.L.S. 69.5 2.42 226
True 10 2.9 270

H-M M.L. 118 1.70 173

2 L.L.S. 56.5 1.49 458
True 0 2.1 470

H-M M.L. 82.2 1.70 400

3 L.L.S. 82.5 2.36 333
True 15 2.3 400

H-M M.L. .0000027 3.63 422

4 L.L.S. 46 3.21 136
True 30 3.0 160

H-M M.L. .0000023% 5.54 183

5 L.L.S. 80 2.80 206
True 25 2.7 250

H-M M.L. 152 1.59 123

6 L.L.S. T4.9 1.40 229
True 50 2.0 280

H-M M.L. 84 1.19 213

TABLE XV

Bias Estimates

True Parameters with Bias

True Parameters without Bias

.50 .60

Illustration Results

Confidence Level

.70 .80

.90

.95

.99

615 704

335 413
.284 .366

0781 0849

507 .604
.460 .558

«920

-71 1
a669

<949

<795
0761

-974
.866
«851




V1l Concluding Material

Summary

A Double Monte Carlo method of estimating complex system
reliabilities at any confidence level was developed based on
three-parameter Weibull component failure distributions. In order to
implement the method, three fast, accurate parameter estimation routines
were developed and tested. The most effective routine, the L.L.S., was
selected and used in the Double Monte Carlo program. Good results were
obtained with componet failure sample sizes as low as five for
reliabilities from 74% to 96%. A step-by-step procedure with an

illustration of the method are provided.

Conclusions
It is concluded that:
1. the Double Monte Carlo method can be readily used to provide
reliability confidence limits for complex systems with

three-parameter Weibull failure distributions;

2. sample sizes as small as five can be used for system reliability

confidence limit estimation;

3. the Double Monte Carlo method is not adversely affected by
reducing the number of points in the sample distributions of
reliabilities to fifty; and

4. further development, full testing, and establishing biases for

three-parameter Weibull reliability estimations is needed.




Recommendations

It is recommended that;
1. further development of computerized reliability estimation
routines be done; and

2. bias tables be developed for a fast, accurate three-parameter

Weibull reliasbility estimation routine.
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APPENDIX A. Double Monte Carlo Program

PRJIGRAM SYSREL
THIS PROGRAM PROVIDES CONFIDENCE LIMITS ON VHE
RELIABILITY OF A COMPLEX SYSTEM WHCSE COMPONENT RELIABILITIES
CAN BZ ESTIMATED. IT ASSUMES THAT THE UNDERLYING
COMPONENT DISTRIBUTIONS ARE 3-PARAMETER WEIBULL ;
AND USES THE DOUBLE MONTE-CARLO TECHNIQUE TO
GENERATE RELIABILITY ESTIMATES. INTERNATIONAL
MATHEMATICS AND STATISTICS LIBRARY (IMSL) ROUTINES

GGUBS»FIR GENERATING A UNIFORM (0s1) RANDOM VARIABLE, f
AND GGWIBe FOR GENERATING A ONE-PARAMETER WEIBULL i

RANDOM VARIABLEe ARE USEDe A LEAST SQUARES METHOD
OF ESTIMATING THE THREE
UNKNOWN PARAMETERS IS USED IN ROUTINE PARAM,
THE PIOGRAM GENERATES ITS CWN REAL FAILURE DATA
BUY CAN READILY BE MODIFIED TO USE ACTUAL FAILURE
DATA BY DELETING THE APPROPRIATE SECTION.
INPUTS
REPS= THE NUMBER OF TIMES SIMULATED RELIABILITIES ARE GENERATED
TO ESTABLISH A PELIABILITY DISTRIBUTION ‘
FUNCTIONe
CCT) yKCIDy THETALID)= THE PARAMETERS OF THE COMPONENT
FAILURE DISTRIBUTIGCNS.
TNFAIL= THE NUMBER OF FATLURES OF EACH COMPONENT
L 2RI N A NENLEE,] :
QUTPUTS:
FOR S0¢60970930050935995% THE NUMBER
OF TIMES THE LCWER LIMIT WAS LESS THAN
THE LOWER CONFIDENCE LIMIT CALCULATYED.
tesbh st abkbd
VARIA3LESS
INTEGER
REPS= AS ABOVE
TNFAIL= AS ABOVE
NLLSO0=NUMBER OF TIMES THE S0 PERCENT LOWER LIMIT
CAPTURES THE RELIABILITY.
NLLEO o NLLTO9NLLBO o NELIU W NLLISHNLLII= AS NLLSO !
FOR THE HIGHER L IMITS
REAL S
C= DISPLACEMENT PARAMETER
K= SHAPE PARAMETER
TH4ETA= SCALE PARAMETER
TREL= TRUE RELIABILITY OF THE CYSTEM
TFAILL TO TFAIL6= TRUE FAILURE VECTORS FOR THE
COMPONENTS
FCCIDoFKCIDoFTHETALID)= FIRST ESTIMATED PARAMETERS
JF COMPONENT I
SCCI)9SKCI)9STHETA(I)= AS ABOVE BUT SECOND ESTIMATE
SFAIL1 TO SFAIL6= SIMULATED COMPONENT FAILURES
RANKC(ID)=MEDIAN RANK ;
RU= VECTOR OF UNIFORM RANDOM NUMBERS i
SRL TO SR6= SIMULATED RELIABILITY OF EACH COMPONENT :
SIS=SIMULATED RELIABILITY OF SYSTEM

[o—_—
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FIRST= EXTRAPOLATED VALUE CORRESPONDING TO THE
FIRST MEDIAN RANX OF §

LAST= AS ABOVE BUT LAST MEDIAN RANK OF 1

SRC=ORDERED RELIABILITY OF EACH COMPONENT WITH
EXTRAPOLATED END VALUES

SRSORD=AS SRC BUT FOR SYSTEM

CL50eceeeeaCLI9= LOWER CONFIDENCE LIMITS

AR EA AR AN N RN RN RERAEDAD AR RN A R RAC AR R AR AN ER AR AN GO N RN

OO0 00

INTEGER REPSoTMFAILNLLSO9NLLSO9NLLT7O9NLLSO
INTEGER NLLIDoNLLIS oM LIS

INTEGER RGEL sNRUNS

REAL R(6)yC(6)sK(B)9THETA(R)sTRELy FC(6)sFK(5)
REAL FTHETA(H)

REAL TFATL1(100)9TFAIL2CL00)oTFAIL3C100)oTFAILSC100)9TFAILS(100)
REAL TFAIL6(100)9SFATILLICL100)ySFAIL2CL00)oSFAIL3ICL100)¢SFAILAC(L00)

REAL SFAILS(100)¢SFAILEC(100)¢SC(6)9SK(E)¢STHETALS)RANK(HD2)
REAL SRSORD(602)¢ RU(6K)
REAL FIRSTeLASTeSRS(600)¢SR1(300)9sSR2¢(300)
REAL SR3€300) ¢SR4(300)¢SRS(300)+SRE6(300)ySRC(59322)
REAL CLSOCLE0sCLTOCLBOLCL3O
REAL CL95,4CL99
DOUBLE PRECISION DSEED
€ DECLARATIONS COMPLETE
c.ﬁ.*.. AR AARRARERANEEERN
[
€ INITIALIZE INPUTS AND COUNTERS FOR NUMBER OF TIMES
C LOWER LIMIT EXCEEDED
DSEED=17943.0D0
PRINT#9 L oLeSe DSEED = "Y,DSEED
RGE1=0
REPS=150
MRU NS =150
PRINTey® NRUMS =  *9 NRUNS
TNFAIL=10
cC(1)=10.
C(2)=0.
C(3)=15.
C(e)=39.
€¢(51=25,
C(6)=50.
KC€1)=2.3
K(2)=.8
K(3)=2.0
K(§)=3.5
K(3)=1e2
K(5)=2,.
THETAC(1)=200.
THETA(2)=470.
THETAC3)=180.
THETAC4)=120.
THETA(S5)=250.
THETA(6)=150.
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NLLSO0=0
NLL60=0
NLL70=0
NLL80=0
NLLY90=0
VLL95=0
\NLL99=0
CALCULATE THE POINT ESTIMATE OF TRUE SYSTEM RELIABILITY

CALL RLBTY(CoKyTHETAyTREL9RGEL)

GENERATE THE REQUIRED NUMBER OF MONTE CARLO
REPETITIONSe. FOR EACH RUN DETERMINE IF THE TRUE
RELIABILITY IS ABOVE THE LOWER LIMIT AT EACH
CONFIDENCE LEVEL AND INCREMENT THE APPROPRIATE
COUNTZR IF SO

DO S M=19NRUNS

GENERATE THE TRUE COMPCNENT FAILURE DATA FOR EACH
COMPONENT
CALL WEIBL(DSEEDsCC1)oKC1)9THETACL) o TNFAILsTFAILL)
CALL WEIBL(DSEEDsC(2)¢K(2)e THETA(2) 9 TNFAILSTFAIL2)
CALL WEIBLC(DSEEDC(3)sK(3)9THETACI) 9TNFAILTFAIL3)
CALL WEIBL(DSEEDSCC(4) K (4)gTHETA(S) oTNFAIL9TFAILS)
CALL WEIBLCDSEEDCC(S)sK(5)eTHETACS) o TNFAILsTFAILS)
CALL WEIBLC(DSEEDC(6) oK (6)9THETACL) 9 TNFAIL9TFAILS)
SORT THE TRUE FAILURE DATA AND CALCULATE THE
ESTIMATORS OF THE PARAMETERS

CALL VSRTACTFAILLSTNFAIL)
CALL VSRTACTFAIL2,TNFAIL)
CALL VSRTACTFAIL3.TNFAIL)
CALL VSRTACTFAILSTNFAIL)
CALL VSRTACTFAILSeTNFAIL)
CALL VSRTACTFAILBTNFAIL)
CALL PARAMCTNFAILSTFAILLFCC1)9FKC(L)oFTHETACL))
CALL PARAMUTNFAILeTFAIL2¢FC(2)9FK(2) FTHETA(2))
CALL PARAMCTNFAILeTFAIL39FC(3)9FK(3)oFTHETA(3))
CALL PARAM(TNFAILeTFAILAeFC(A)+FK(A)FTHETA(S))
CALL PARAMCTNFAILeTFAILSeFC(S)¢FK(5)9FTHETA(S))
CALL PARAMCTNFAILWTFAILGoFC(B)oFK(6)9FTHETA(S))
FOR THE EMPIRICAL DISTRIBUTIONy GENERATE REPS
RELIABILITY ESTIMATES.
FIRST GENERATE TNFAIL SIMULATED FAILURES FOR EACH
OF THE COMPONENTS USING THE
ESTIMATES OF THE PARAMETERS
D0 10 L=14REPS
CALL WEIBL(DSEEDsFC (1) oFK(1)oFTHETACL1) oTNFAILySFAILY)
CALL WEIBL(DSEEDFC(2)oFK(2)9yFTHETAC(2)9TNFAILoSFAIL2)
CALL WEIBLC(DSEEDSFC(3)oFK(3)oFTHETAC(3) 9 TNFAILySFAIL3)
CALL WEIBLC(DSEEDSFC(4)sFK(8)FTHETACA)9TNFAILSFAILY)
CALL WEIBL(DSEED¢FC(S)9oFK(5)¢sFTHETAC(S) s TNFAIL9 SFAILS)
CALL WEIBL(DSEEDFC (6)oFK(6)oFTHETACE) 9 TNFAILSFAILG)
ORDER THE SIMULATED FAILURES AND USE THEM TO OBTAIN
THE SECOND ESTIMATE OF THE COMPONENT PARAMETERS
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i CALL VSRTACSFAILL,TNFAIL)
CALL VSRTACSFAIL2sTNFAIL)
CALL VSRTACSFAIL3sTNFAIL)
CALL VSRTACSFAIL&sTNFATL)
CALL VSRTACSFAILSeTNFAIL)
CALL VSRTACSFAILGsTNFAIL)
CALL PARAMCTNFAIL9SFAILL9SCC1)9SK(1)9STHETACL))
CALL PARAMCTNFATL9SFAIL29SC(2)9SK(2)oSTHETA(2))
CALL PARAMUTNFATILSFAIL39SCC3)9SK(3)9STHETA(3))
CALL PARAMCTNFAILSFALLA9SCC4)9SK(4)ySTHETACS))
CALL PARAMCTNFAILsSFAILSsSC(S)ySK(5)sSTHETA(S))
CALL PARAMCTNFAILsSFAILS9SCC6) 9SK(6)¢STHETACS))
C CALCULATE THE RELIABILITY OF EACH COMPONENT
C USING THE SECOND ESTIMATE OF COMPONENT PARAMETERS
C TO BUILD THE COMPONENT RELIABILITY VECTORS SR1 TO Si§

SR2CLI=RELY(SC(2)9SK(2)9STHETAC(2) +RGEL)
SRICLI=RELY(SC(3) 9SK(3)9STHETA(3) 4RGEL)
SR (LI=RELY(SC(4)ySK(4)sSTHETAC(4) 4RGEL)
SREC(LI=RELY(SC(5) ¢SK(S)sSTHETA(S) »RGEL)
SRE(L)I=RELY(SC(B)9SKI6)9ySTHETA(6) sREEL)
CONTINUE

| SRLILI=RELY(SC(1)9SK(1)9STHETA(1) 4RGEL)
i
I

(=]

ESTABLISH RELIABILITY DISTRIBUTION FUNCTIONS FOR
EACH COMPONENT TYPE USING ORDERED MEDIAN RANKS:

ONE RANK VECTOR AND THE SIX RELIABILITY DISTRIBUTION
VECTOS WILL MAKE UP THE SIX DISTRIBUTION FUNCTIONS
EACH WITH REPS+2 VALUES

o000

RANK(1)=0.
RANK(REPS+2)=1.
DO 15 I=1.REPS
RANK(I+1)=(REALCID=o3)/(REAL(REPS)*.4)
5 CONTINUVUE
ORDER THE RELIABILITY VECTGRS AND ESTABLISH THE VALIJZS
CORRESPONDING TO MEDIAN RANKS 0 AND 1

OO

CALL VSRTACSR14REPS)
i CALL VSRTACSR24REPS)
‘ CALL V3RTA(SR3yREPS)
CALL VSRTA(SRA4REPS)
CALL VSRTACSRSeREPS)
i CALL VSRTA(SRG64REPS)
! CALL EXTRACSR19RANKsFIRSTsLASTIREPS)
; ' SRZ(1e1)=FIRST
' SRCC1yREPS+2)=LAST
"i CALL EXTRA(SR29RANK ¢FIRSTyLAST4REPS)
; SRCC(291)=FIRST
i SRC(29REPS#2) =LAST
i CALL EXTRACSR39RANK ¢FIRST4LASTHREPS)
| SRC(391)=FIRST
H SRZ(34REP3#2)=LAST
CALL EXTRACSRA9RANK ¢FIRSToLASTREPS)
SRC (491 )=FIRST
! SRZ (A 4REPSe2)=LAST
} CALL EXTRA(SRSesRANK oFIRST4LASTIREPS)
SRC(S5¢1)=FIRST
SRC(SIREPS+2)=LAST
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CALL EXTRA(SRG6EyRANK ¢FIRST9LASTHREPS)
SRC(S91)=FIRST
SRC (69 REPS+2)=LAST

DO 20 I=14REPS

SRZ(1,4I+1)=SR1(]I)

SRC(241I+1)=SR2(I)

SRC(341+1)=SR3(I)

SRC(449[+1)=SRA(I)

SRC(3+I+1)=SRS(])

SRC(69I+1)=SR6(I)

CONTINUE
RANDOMLY SELECT A RELIABILITY FROM EACH RELIABILITY
DISTRIBUTION FUNCTION USING A UNIFORM(0y1) GENERATOR
TO OBTAIN A MEDIAN RANKe AND LINEAR INTERPOLATION.
CALCULATE SIMULATED SYSTEM RELIABILITY SRSe REPEAT
600 TIMES.

O0O00O000ON

D0 25 I=1,600

CALL GGUBS(DSEEDy64RU)

DO 30 J=146

I1=2

35 IFCIT«LE<REPS+2)THEN

IF(RUCYY SLELRANKC(II))ITHEN
CALL INTERP(RANKCII)RANKC(II=1)9SRCCJ9IID¢SRC(JIeII-1)

IRUCJI R (UD)
II=REPS+3
ELSE
II=1I+1
END IF

60 TO 35

END IF

.30 CONTINUE

SRIC(IN=R(1)Ie(((R(2)*R(3)I=R(2I*R(3)I*R(4))I+(R(5)+R(6)
1=-RES5)2R(6)II~((RI2I+R(3II=R(2)2R(3))2R(4)) =
L(R(S)+R(6)I-R(5)+(6)))

S CONTINUE

ORDER THE SYSTEM (500) RELIABILITY ESTIMATES USING
MEDIAN RANKS AND DETERMINE THE 9999549309809 70960¢50
PERCENT LOMWER LIMITSe. NOTE IF EACH CONTAINS THE TRUE
SYSTEYW RELIABILITY AND IF SOe INCREMENT THE APPROPRIATE
COUNTER NLLS50seeeNLL99.

CALL VSRTA(SRSs600)

RANK(1)=0.

RANK(602)=1.

D0 30 I=19600

RANK(I+1)=(REAL(I)=<3)/600.%
40 CONTINUE
CALL EXTRACSRSeRANK ¢FIRST9LAST$600)
SRSORDC(1)=FIRST
SRSORD(602) =LAST
DO 45 I=1,4600
SRSORD(I*1)=SRS(I)
CONTINUE
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CALL INTERP(RANK(B) ¢+RANK(T)9SRSORD(B)9SRSORD(T)
1«01 sCLIM

CALL INTERP(RANK(32)9RANK(31)9SRSORD(32)ySRSORD(31)y
1.05+CLIS)

CALL INTERP(RANK(62)¢RANK(61)9SRSORD(62)9SRIORD(S51)
lel1sCLIO)

CALL INTERPC(RANK(122)9RANK(121)9SRSORD(122)4SRSORD(121),
1.29CL30)

CALL INTERP(RANK(182)4sRANK(181)9SRSORD(182)4SASORD(181),
1.3+ CLT0)

CALL INTERP(RANK(242) 4RANK(241) 9SRSORD(242)9SRSORD(241)
1.44CL60O)

CALL INTERP(RANK(302)sRANK(301)9SRSORDC302)9SRSORD(301),
1e5¢CL50)

IFCCLIFLT.TRELINLLII=NLLII+1
IFCCLISLTTRELINLLISINLLIS*]
IFCCLI0LTTRELINLLI0=NLLIO+L
[FCCLBOLTTRELINLLBO=NLLEBO*]
[FCCLTOLTSTRELINLLTO=NLLTO 1
IFCCLO0LTTRELINLLGO=NLLGO*1

IFCCLS0 LT« TRELINLLSO=NLLSO+1
S CONTINUE
C PRINT THE NUMBER OF TIMES THE TRUE RELIABILITY

~C  WAS OVER EACH CONFIDENCE LIMIT

PRINT#*e® TRUE RELIABILITY IS ?*,TREL
PRINT#y *NUMBER OF FAILURES VYoTNFAIL
PRINT#e® NUMBER OF REPETITIONS T'4REPS
PRINT*9 "NUMBER OF TIMES RELIABILITY GE 1 = °*,RGEL
PRINTay® NUMBER ABOVE S0 PERCENT LOMER LIMIT *4NLLS50
PRINT#*y® NUMBER ABOVE 60 PERCENT LOWER LIMIT °®yNLLAD
PRINT#»y®* NUMBER ABOVE 70 PERCENT LOMER LIMIT *®4NLLTD
PRINTay" NUMBER ABOVE 30 PERCENT LOWER LIMIT v®y,NLLSO
PRINTe«y® NUMBER ABOVE 90 PERCENT LOMER LIMIT ®oNLLIO
PRINTey® NUMBER ABOVE SS PERCENT LOWER LIMIT 9®¢NLLIS
PRINT#e® NUMBER ABOVE 99 PERCENT LOWER LIMIT *4NLL9I9
sTiP
END
Casenanpandosnsns
SUBROUTINE EXTRAC(Xe Y9FIRSToLASTIREPS)
USES LINEAR INTERPOLATION OFF THE TNO END
VALUES TO OBTAIN THE RELIABILITIES CORRESPONDING
TO THZ MEDIAN RANKS 0 AND 1y FIRST AND LAST.
SLOPE IS THE SLOPE OF THE LINEAR LINE BETWEEN THE
TWO END VALUES AT EACH END.
INTEGER REPS
REAL XC300)9oY(302)9FIRSTHLAST
Z=X(2)-%X(1)
ZZ=X(RFE.PS)-XC(REPS~-1)
V=Y (3)-v(2)
VV=Y(REPS+1)=-Y(REPS)
IF(2.6T«0e) THEN

(s Xz Rz Xs X2

SLOPE=V/Z
IF(SLOPE-EQs0«)THEN
FIRST=X(1)
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ELSE
' FIRST=X(1)-Y(2)/SLOPE
; - END IF
ELSE
FIRST=X(1)
END IF
IF(ZZ2.6Te0)THEN
SLOPE=VV/22 .
IF(SLOPE.EQe 0+ )THEN
LAST=X(REPS)
ELSE
LAST=X(REPS)+ (C1-Y(REPS+1))/5LOPE)
| END IF
. ELSE :
‘ LAST=X(REPS)
END IF
IF(FIRSTeLTA0-)FIRST=0a
IFCLAST«GTele)LAST=1.
RETURN
END
CREAARRR A ARV ABARERACARARANAR ARSI R AR RAS
SUBROUTINE INTERP(UPPERYILOWERY UPPERR¢LOWERR ¢MEDSR)
USES LINEAR INTERPOLATION TO OBTAIN A RELIABILITY 1
Re CORRESPONDING TO THE MEDIAN KANKy MED. MED IS
BRACKETED BY MEDIAN RANKS UPPERY AND LOWERY WHICH
CORRESPOND TO RELIABILITIES UPPERR AND LOVWERR. 1
REAL UPPERYJLOWERYy UPPERRLOWERRsRsSLOPEJMED
X =UPPERR~LOWERR
Y=UPPERY-LOWERY
IF(XeGTe0a) THEN
SLOPE=Y/X j
R=LOYERR+*((MED~L QWERY)/SLOPE)
: ELSE
[ i R=UPPERR
END IF
IF(Re«6T el <)R=UPPERR
; RETURN
] END
Ceganasanttattindotntdattatadan
SUBRQUTINE WEIBL(DSEED¢CsKeTHETAsNWoRY)
CALCU_ATES RANDOM 3-PARAMETER WEIBULL VARIATES
RWe A TOTAL OF NW ARE FOUND USING IMSL ROUTINE
GGWIB
C IS THE POSITION PARAMETERy K IS THE SHAPEe AND
THETA IS THE ZCALE.
H INTEGER NW
REAL RW(300)¢CoKoeTHETA
1 DOUBLE PRECISION DSEED
CALL GGWIBC(DSEEDyKyNWIRW)
00 3 I=1,yNW
RUCIDI=THETA*RW(I)+C
3 CONTINUE
RETURN
END

o000

o000 0
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SUBROUTINE RLBTY(CoeKosTHETAyRSWRGEL)
€ CALCULATES SYSTEM RELIABILITY FROM COMPONENT
C PARAMETER DATA.
C R(s) IS THE COMPONENT FELIABILITIESS RS IS THE SYSTEM.
REAL C(6) oK(B)9THETAL(H) 4R (6)9RS
INTEGER RGE1
CALCU ATE COMPONENT RELIABILITIES
DO 10 I=1s6
RCDI=RELY(C(I)oK(I)9THETACI) 4RGE1)
10 CONTINUE
C CALCULATE SYSTEM RELIABILITY
RS=RILI*(C(R(2I+R(II-R(2)I+R(3))I*+R(4) I+ (R(S)I+R(E)
1-R(5)2R(6))-((R(2I+R(3)-R(2)+R(I))I*R(A)) =
1(R(S)I+R(6)-R(SI*R(6)))
RETURN
END
Canetasasssatrtssnsase
FUNCTION RELY(CoKoTHETALRGEL)
C CALCWATES COMPONENT RELIABILITY FOR 3-PARAMETER WEISULL
REAL CoKyTHETA,T
INTEGER RGE1
T=100.
X=T-C
[F(XeLEaQ<)THEN
RELY=1.
RGE1=_GE1l+1
ELSE
XzC(T-CY/THETA) = «K
IF(XalLTe204) THEN
RELY=EXP(-X)
ELSE
RELY=0.
END IF
EMD [F
RETURN
END

(g ]
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APPENDIX B. Parameter Estimation Routines

Cosncansrtadntattrastnssdae
SUBROUTINE PARAM(NUMsFAILsCWoKWsTHETAW)
MAXIMUM SAMPLE SIZE DIMENSIONED=100
INPUT
NUM=SAMPLE SIZE
FAIL=VECTOR OF SAMPLE DATA
ouUT2UrS i
ESTIMATES OF LOCATION PARAMETER CWe SHAPE PARAMETER
Kidy AND SCALE PARAMETER THETAW
VARIA3LES:
INTEBER
NUM=SAMPLE SIZE
MIN=MINIMUM SQUARE ERROR
FLAG IS A FLAG TO MARK THE MINIMUM ERROR
IEAL
FAIL=VECTOR OF SAMPLE DATA
RANK=VECTOR OF MEDIAN RANKS
PLOTRX=PLOTTING RANK = LNC(LNC(L-1/F(T)))
EY= VICTOR OF EXPECTED Y VALUES IF THE SAMPLES PLOT
LINEALY ON A MEIBULL PLOT WITH THE Y AXIS BEING
THE LN OF THE FAILURE TIMES AND THE X AXIS THE
LNLN OF L/7(1-F(T))
SQRIRI=VECTOR OF SQUARE ERROR SUMS
LNFAIL=VECTIR OF LM OF SAMPLE DATA
CuUyoKWe THETAMW= AS ABOVE
ECoEKyETHETA= ESTIMATES OF PARAMETERS
TOTALX= THE TOTAL OF THE ABSCISSA VALJES
TOTALY= THE TOTAL OF THE ORDINATE VALUES

(2 XZ2EZ IR ELEEERSEZZRIZASREASAR AR SRR 2 84

OO0 AONNOOOOOAN0AOO00O0ONOO

INTEGER NUM, FLAG
REAL FATLC100)9RANK(LOG)yPLOTRK(103)4+EY(0210)
REAL SQRERRCOSL0)yLNFATLCL00)9CHoKW9THETAWIMIN
REAL EC(0210)9EKCO:10)¢ETHETACOIL10) 4TOTALX9TOTALY
C DECLARATIONS COMPLETE
Cottcnnanetsasnstdastnasnttne
C CREATE A MEDIAN RANK VECTOR AND A PLOTTING LNLN
C VECTOR MWITH A TOTAL FOR THE X AXIS
TOTALX=0.
DO 10 I=1,NUM
RANKCIDI=C(I=-e3)/(NUM+.4)
PLOTRK(I)=ALOGCALOG(Llo/(lo~-RANK(CI))))
TOTALX=TOTALX*PLOTRK(I)
0 CONTINUE

SET VALUES OF C FROM 0 TO 1e*FAIL(1) AMD
DETERMINE THE SQUARE ERROR FROM A LINEAR

PLOT JN WEIBULL PAPER FOR EACH

USING THE RELATIONSHIP LNCT)=C(1/K)eLNLNC1/1~F(T))
*LNCTHETA) .

o000 6 -
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N = Z=PLOTRKCNUMI-PLOTRK(1)
D0 15 J=0,10
N=1
[FCJU.EQe10) THEN
N=2
2Z=PLOTRK(NUM)~PLOTRK(2)
END IF
ECCJIZFAILC1)*o14REALCY)
D0 20 I=NysNUM
LNFAILCII=ALOGCFAIL CI)-EC(J))
o CONTINUE
FIND THE RELATIONSHIP THAT IS CLOSEST TO LINEAR
AND USE THE PARAMETERS FOR THAT MATCH
FIRST ESTIMATE Ks THEN THETA ASSUMING THAT
1/K IS THE SLOPE OF THE LINE
EKCJI=Z/CLNFAIL(NUM) -~LNFAIL(N))
TOTALY=0.
D0 25 I=NsNUM
TOTALY=TOTALYSLNFAIL(I)
25 CON TINUE
ETHETACU) =(TOTALY-TOTALX/EK(J) ) /REAL (NUM=N+1)
CALCULATE THE ESTIMATES OF LN(T-C) WHICH IS THE ORDINATE,
C ESTIMATE THE ERROR SQUARED
SARERR(JI=0.
DO 30 I=NsNUM
EYCI)=PLOTRKCII/EKCJI+ETHETA(Y)
SGRERR(J) =SQRERR(J)I +(EY(I)~LNFAILCI) )& CEY(I)=LNFAILCI))
30 CONTINUE
15 CONTINUE
C FIND THE CLOSEST LINEAR RELATIONSHIP AND USE THE
C PARAMETERS AS THE ESTIMATES
FLAG=0
MIN=SQRERR(O)
00 35 I=1,10
IFCSQRERRCI VLT JMIN)THEN
MIN=SQRERR(I)
FLAG=1
END IF
35 CONTINUE
| CW=EC(FLAG)
u KN=EK(FLAG) «
THE TAM=EXPCETHETACFLAG)) ]
RETURN
END

Oa00ON
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Codtatnonaranntshassattanan
SU3ROUTINE PARAMINUMSFAILsCWoKuWeTHETAMW)

MAXIMUY SAMPLE SIZE DIMENSIONED=100

INPUT

NUM=SAMPLE SIZE

FAIL=VECTOR OF SAMPLE DATA

QUTPUTS .

ESTIMATES OF LOCATION PARAMETER CuWy SHAPE PARAMETER
KWe AVD SCALE PARAMETER THETAW

VARIA3ZLES?

INTEGER

NUM=SAMPLE SIZE

FEAL

FAIL=VECTOR OF SAMPLE DATA

RANK=VECTOR OF MEDIAN RANKS
PLOTRC=PLATTING RANK = LNILN(1-1/F(CT)))
LNFAIL=VECTOR OF LN OF SAMPLE DATA

CWoeKWe THETAN= AS ABOVE

TOTALX= THE TOTAL OF THE ABSCISSA VALUES
TOTALY= THE TOTAL OF THE ORDINATE VALUES

L2 2 f 22 SR EEL SIS NIASYE RS R RL NSRS NS

Ry N e s N N KN Kz Xz N K Kz Re Nz Ka N Kx Xz X

INTEGER NUM
REAL FAIL(100)RANK(L00)9PLOTRK(10D)
REAL SLOPEZLNFAIL(L109)9CWoKNoTHETAWsTOTALXsTOTALY
C DECLARATIINS COMPLETE
c........ EOBERANEANRARRNAE RS
+C CREATI A MEDIAN RANK VECTOR AND A PLOTTING ULNLN
C VECTOR WITH A TOTAL FJOR THE X AXIS
TOTALX=0.
DY 10 I=1eNUM
RANK(ID=(I-a3)/(NUM+.%)
PLOTRK(I)=ALOGCALCG(1./(lea=RANK(I))))
TOTALX=TOTALX+PLOTRK(I)
10 CONTINUE
C ESTIMATE C BY LINEAR EXTRAPOLATION FROM THE FIRST
C TWO NDER STATISTICS
C
c

CW=FAIL(2)=(FAILC2)~-FAILC1))INRANK(2)/(RANK(2)~-RANK(1))
CALZU_ATE THE LOG OF THE FAILURE TIMES MINUS C
AND THE TOTAL FOR THE Y AXIS
TOTALY=0.
DO 25 I=1,NUM
LNFAILCI)=ALOGC(FAIL (I)-CW)
TOTALY=TOTALY+LNFAIL(D)
25 CONTINUE
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C CALCULATE K BY THE AVERAGE SLOPE INVERTED
C DETERIMINE THE SUM CF ALL THE SLOPES AND THE AVERAGE
C INVERTED
SLOPE=0.
DO 20 N=24NUM
SLOPE=$L°PE0(LNFAIL(")-LNFAIL(“-I))I(PLOTRK(H)-PLDTRK(H*I))
20 CONMTINUE
KUz (REAL(NUM)=1.)/SLOPE
LNCTHETA) IS A CONSTANT WHICH IS INCLUDED IN THE
THE RE_ATIONSHIP LN(T)I=1/KsLNULNCL/ZCL~F(T)))
*LN(THZTA). IN THE CALCULATIONS OF THE TOTALS
IT IS INCLUDED NUM TIMESs SO THE AVERAGE VALUE
WILL EQUAL LNC(THETA)
THE TAW=(TOTALY-TOTALX/KW) /REAL(NUN)
THETAN=EXP(THETAM)
RETURN
END

s Rz Naly)
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Contaaastasittnddtbdnstttas
SUIROUTINE PARAMINUMGFAILCWeKHoTHETAW)
MAXIMUY SAMPLE SIZE DIMENSIONED=100
INPUT
NUM=SAMPLE SIZE
FAIL=VECTOR OF SAMPLE DATA
OQUTPUTS
ESTIMATES OF LOCATION PARAMETER CWy SHAPE PARAMETER
KWe AND SCALE PARAMETER THETAM
VARIABLES:
INTEGER
NUM=SAMPLE SIZE
IEAL
FAIL=VECTOR OF SAMPLE DATA
RANK=VECTOR QOF MEDTYAN RANKS
FAILMC= FAILURE TIMES MINUS C
LNFAI_=VECTOR OF LN OF SAMPLE DATA
CMoKWe THETAW= AS ABOVE
SUME=NUM=SUM OF FAILURE TIMES+**K «LN(FAILURE TYMES)
SUM2=3UM OF FAILURE TIMES*sK
TOTALX=SUM OF LNC(FAILURE TIMES)
SUMD =S UM1/SUM2 ~-TOTALX

(2 22 222 8 22222222222 R222 82222 s2 s Rl a S )

OOOOOOOOOOOOOMHO0OOO00N

INTEGER NUuM
REAL FAILMC(100)9SUML 9SUM24SUMO
REAL FAILC(100)sRANK(2)
REAL LNFAILCLO0CG) oCWoKWoEKeTHETAMeTOTALX X
C DECLARATIONS COMPLETE
c............'...‘.Q.i... [ 2 & B
C
DY 10 I=1,2
RANKCINI=(I-a3)/ (NUM+.4)
10 CONTINUE
C ESTIMATE C BY LINEAR EXTRAPOLATION FCOM THE FIRSY
C TWO OIDER STATISTICS
CH=FAIL(2)-(FAIL(2)~FAILC(1))+RANK(2)/CRANK(2)-RANK(1))
C CALTZU_ATE THE LOG OF THE FAILURE TIMES MINUS C
C AND THE TVOTAL LOG OF THE FAILURES MINJS C
TOTALX=0.
DO 15 I=1eNUM
FALLMCCI)=FAIL(I)-CWM
LNFAILCI)=ALOG(FAILMC(I))
TOTALX=TOTALX+LNFAILC(I)
15 CONTINUE
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C CALCULATE K BY AN ITERATIVE TECHNIQUE OF MAXIMUM
€ LIKELIHOOD.

90

20

KM=1.

£EK=2.

IFCABS(KY=EK) «LTa 00001360 TO 80
SUM1=0.

SUM2=0.

D0 20 I=1¢NUM

X=FAILMCCI)»aKlM
SUMLI=SUML+UNFAILCI) «X
SUM2=SUM2+X

CONTINUE

SUMO=((SUML «+REAL(NUM))I/SUM2)~-TOTALX
EX=REAL (NUM)/SUMD
KU=(2,2EK+KW) /3.

GO TO 90

- C CALCULATE THETA USING THE VALUE OF K
C AND THE SUMS DETERMINED

80

THETAW=(SUM2/REAL(NUM) ) ee (]l ./KM)
RETURN
EqD
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PROGRAM PARAM
INPUT
N=SAM?LE SIZE (BEFORE CENSORING)y N=10Jd OR LESS AS
Ol MENSIONED
SS1=0 IF SCALE PARAMETER THETA IS KNOWN
SS1=1 [F THETA IS TO BE ESTIMATED
$S2=0 IF SHAPE PARAMETER K IS KNOWN
§§2=1 IF K IS TO BE ESTIMATED
SS3=0 {F LOCATION PARAMETER C IS KNOWN
SS3=1 [F C IS TO BE ESTIMATED
TCI)=I*TH ORDER STATISTIC OF SAMPLE (I=1,N)
M=NUM3ER OF OBSERVATIONS REMAINING AFTER CENSORING
N-M FROM ABOVE
C(1) =INITIAL ESTIMATE OR KNOWN VALUE OF C
THETACL1)=INITIAL ESTIMATE OR KNOWN VALUE OF THETA
EXCL)=INITIAL ESTIMATE OR KNOWN VALUE OF X
MR=NWRBER OF CBSERVATICNS CENSORED FROM BELOW,

"NORMALLY u INITIALLY

(I ETEINEEEEEASEANERE S RA SRS T R 2
ouTeur
NoeS3S19SS529SS3eMeCCL)eTHETACL)9EK(1)oM?

--SAME AS FOR INPUT
C(J)SESTIMATE AFTER J-1 ITERATIONS

( QR KNOWN VALUE OF ©O)
THETACJ)I=ESTIMATE AFTER J=-1 ITERATIONS

(OR KNOWN VALUE OF THETA)
EXC(J)=ESTIMATE AFTER J-1 ITERATIONS

(OR KNOWN VALUE OF K}
MAXI MJM VALUE OF J DIMENSIONED IS 550
EL=NATURAL LOG OF LIKELIHOOD FOR C(J)e THETAC(J)y EK(J)
REFERZNCE
HARTER » HeLECN AND A.HMOOREes MAXIMUM LIKELIHOOD
ESTIMATORS OF THE PARAMETERS QF GAMMA AND WEIBULL
POPULA TIONS FIOM CCMPLETE AND FROM CENSORED SAMPLES
TECHNIMETRICS,y 7(1965)

I 2 X2 ETNETXEERASER ARSI ENERRRSR ISR SRR R R B2 R 2]

DIMENSION TC100)9CUS550)eTHETACSS0) 9yEK(S50)9X(56)9Y(55)
S31=1.
$S2-=1.
SS3=1.

N=L0

n=10
THETA(1)=1,
C(1)=0.
EKC1)=1.
MR20
T(1)=145.956
T€2)=162.52
TC(3)=175.64
T(3)=2204%47
T(5)=22363
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e e e h -

104
110
31

33

34
T4

75
35

37

19

20

S3
S4
55

56

Epr e .. PR P T o 1 T Ry

T(6)=261.63

T(7)=329.93

T(8)=334,266

T(9)=350.70

T(10)=359.1%

IF(N)GGy6E69109

EN=N

IF(M)E645669110

EM= M

ELNM=0.

EMR =MR

MRP =MRe1

NM=N-M+1

DO 33 I=NM¢N

EI=1I

ELNM=ELNM+ALOG(ED)

IF(MR)E69 3574

DO 75 I=1¢MR

El=1

ELNM=ELNM=-ALOG(EI)

DO 30 J=1,550

IF(JU-1)669254¢37

JJd=d=-1

SK=0.

SL=0.

DO 6 I=MRPsM
SK=SKe(T(I)=-C(JJ) I+ 2EK(JJ)
IF(SS11747,8
THETACJI=THETAC(JJ)

GO 10 9

IF(MR)66919+20
THETAC(J)=C((SK+(EN-EM) *(T(M)=-C(JJ))=+EK(JJ))I/EN)
1e2(1le/EKCUJ))

G0 TOo 9

X(L)=THETA(JJ)

LS=0

D0 21 L=1,55

LL=t-1

LP=Le+1 ;
X(LP)=X(L) 3
ZRK=C((T (MRP)I~C(JJ))/XCL)) 2+EK(JJ)
YL)==EK(JJIIS(EM=EMR)/X(L)*EK(JJ)*SKIX(L)es(EKC(JSJ)®]l,)
1+ECCIJ) 2 CEN~EM) (T M)=C(UJ) ) 2sEK(JJI/X(L) 2o (EXC(JJ)*1ls)
1=-EMR *EK (JJ) «ZRK*EXP (-2RK)/(X(L)*(le-EXP(~ZRK)))
IFCY(L))IS3,73,54

LS=LS-1

IFCLS*L)S58,35,58

Ls=L3+1

[FCLS-L)S8¢56,58

X(LP)=eSeX(L)

GO T0 61

X(LP)I=1aSex (L)
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58
. 59

60
61
21
73
10

11
17

13

a3

44

A4S
46

47
43

49
S0
51
52
12
62
14
18
16

60 TO 61

IFCYCLI)*Y(LL))60473+959

LL=LL~-1

G0 TO 58
NWLPI=XCLI*Y LI 2 CXCL)=XCLL))ZCYC(LLY)-Y(L))
IFCABSIXCLPI=XIL))=1E-4)73,73,21
CONTINUE

THETALJI =X(LP)

EKC(J)=EKCJJ)

IF(SS2)12,412011

00 17 I=MRP+M

SL=SL+ALOG(T(I)~-C(JuU))

X(LI=EK(D)

LS=0

DO S1 L=1,55

SLK=0.

DO 18 I=MRP,M
SLK=SLK+(ALOG(T(I)=C(JJII=-ALOG(THETA(JIII*(T(I)-CCJI))
1eaX (L)

LL=L-1

LP=Le+1l

X(LP)=X(L)
ZRK=C(T(MRP)I=C(JJ)I)I/THETAC(J) )re X (L)
Y(LI=(EM-ENRI*(1s/X (L)-ALOGC(THETAC(J)))+SL~-SLK/THETACY)
LeaX (L)+(EN-EM) 2 (ALOGC(THETACJ))=ALOGC(T(MI=C(JJ)I)IDIa(T (M)
L=CCJJIIse XCL)/THETA(J) 2o X (L) *EMR e ZRK« CALOG(ZRK) /X (L))
1+EXP(-2RK)/ (]l «-EXP(~ZRK))
IFCY(L))A39524944

LS=Ls-1

IFCLS*LIAT985447

LSz=L S+

IFCL3I-L)4T086947

XILPI=aSeX(L)

GO0 T0 30

XCLP)YI=1.5¢X(L)

G3d TO S0

IFCY(L)aY(LL))IND4,52,48

LL=LL~-1

50 TO a7

XWPI=XL) eV (L) «CXCLI=X(LL)DI/ZCYLLL)~-Y(L))
IFCABSIXC(LPI=X(L))~1.E~4)52452951
CONTINUE

EXCJ)=X(LP)

CJI=CCUJ)

IF(SS3)25425414

IFCla-EX(U))I169T7Be78

[F(SS1+S52)57¢57416

X€1)=CCJ)

LS=0

DO 23 L=1955

SKL=0

SR=0

75

T o A, AT ot 35~ . TR WA PG A5




15

39
A0

41

A2

70
71

72
22
123
I2a

157
25
38

67
63
68

36

27
28
29
30
66

— e ———— o e =

DO 1S [=MRP M

SKL=SKL1+(TCI)=X(L)) ea(EK(J)=1a)
SR=SR+1./7(TCILI=X(LD))

LL=L~-1

LP=L+1

X(LPI)=X (L)
ZRK=C(TC(MRP)I-X(L))/ THETA(JU)I ) aesEK(J)
YL)=(1a~EKC(J))2SREEK(JIS(SKL1+(EN-EM) a(T(M)=-X(L))
12 a{EK(J)=1e))/THETACU) s eEKC(U)-EMR *EK(J) *ZRK*EXP (-2ZRK)
1/7CCTCARPI=X(L)IV* (1. ~EXP(~Z2RK)))

TFCY(L)) 39924440

LS=L3~1

IFCL3+L)T0481,470

LS=LS+1}

IFCLS=L)T709232570

X(LPI=ed¢X(L)

60 TQ 22

AX(LPIZSeX(L)+S2T(1)

GO TQ 22

IFCYC(L)eY(LL)DT2924,71

LL=LL~-1

GO YO0 70
XCLPISX(LIeY (L) «CXC(LY)-XCLL)DIZCYCLLY-Y(L))
IFCABSIX(LP)=X(L))~1.E-8)24,24,23
CONTINUE

CCJI=X(LP)

GO0 T9 25

CwHI=T(1)

LF(MR)644 35 469

20 A3 I=1M

IFCC(UYI*1E-4-T(I))68B96Te67

MR=MR+1

C(L)Y)=T(1)

IF(MR)IH6969931

S5K=0e

SL=0.

00 36 I=MRPsM

SK=SK+(TCI)=CC(J))IreEK(S)
SL=SL+ALIOG(TCI)~-CCU))
ZRK=((T(MRP)I=CC(J)I)I/THETAC(J) )2 eEK(J)
EL=ELNM*(EM-EMR) a(ALIGCEK(JI)I-EK(J) *ALOGI(THETACJ)) ) *»
ICECCJU)=1e)oSL=(SK+(EN-EMI2a(T(MI-C(J))2+EKC(J))/C(THETA
1CJ) s osEX(JI)+EMR*ALOG(Ll.-EXP(-2RK))
[FCJU=3)30427427
IFCABS(CC(UI-C(JJ))I=~1.E~-4)283,428,30
IFCABSCTHETACJU)I=THETAC(JU))I=1E-4)27929,430
IFCABSC(EKC(JI-EK(JJU) )~1.E-4)66966930
CONTINUE

sT)P

END




APPENDIX C Derivation of Maximum Likelihood Equations

The two-parameter Weibull distribution function is

f(t;e,k) = L%k-l exp [-(g)k]

Assuming a random sample of n independent failures Ty, Tp, ... Ty,
the likelihood function is

L{e,k) = iEI E;Ei * exp L-(%pk]

The natural logarithm of the likelihood function can be used to find
the maximum likelihood since the maximum point will be the same for both
the logarithm and the function. The random samples can be considered
constants for the likelihood function. If the partial derivatives of the
logarithm of the likelihood function are taken with respect to each of
the two parameters and set equal to zero, the two equations can be solved
for the two unknown parameters by first solving for e in terms of k, then
substituting and solving for k.

k-1 k
n 1. (kti ti
iilln(gﬁ exp[-(e ) ])

1n L

k
n t;
i§1[ln k + (k-1) In t; - k 1n e - (;l) ]

k
n(ln k - k 1n e) + 7 [(k-1) 1o t; - (H) ]

9 t. set equal to zero
= 1

L s mns




3ln L n t; ti
S - p-nlne+ B [nty - ()X ()]

n n n . .
=g -nlne+ 1, Inty -3, (t—é)kln(%)
n ? t-k n n k t
=g -k In (121 L]+ ifgln ¢t - & igl ts ln(—é)
n i1 4
L _n n K\, D P
n n n p R
- . .k . k
Pk Ly tifineg e By Ko gk an igl t;
1=1 1 1=1 1 7/
1 n n —_— n
=R tiEp oty - P KOGz, 45K In gy
1=1"1
n n
PR — n —_— k n k
- - . k .
tplan-,n kg 4K ann e Bk e 0 B e
1=1"1 i=11
- § In £y vk
n o o
=k tifgln by - P igl tiK 1n ¢;
i=17i set equal to zero
N n n n and solve
- - = - .k .
Ee il Ity -0 K3 45K dn gy
1=1"1
n
k =
n i’g’l tik In ti n
. — "n k T gy 1n t;
1 R
1=1 1
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APPENDIX D Component Failure Data - Time To Failure

-

Component
139 146 162 175 220 233 261 290

308 329 334 335 350 359 463

Component 2
13 216 246 252 296 326 415 431
444 480 529 535 661 664 995

Component 3
165 174 272 289 305 348 353 3N

384 462 463 508 510 518 570 {

Component 4
92 99 142 150 151 152 160 167

182 187 200 201 211 214 216 .

Component 5
160 186 200 204 206 213 259 261

265 287 298 304 326 321 438

[

Component
107 11 142 162 189 212 231 233 ﬂ

266 274 306 369 498 509 719
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